Структурная модель дискретного роста микротрещин при многоцикловой усталости
Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Second All-Russian Scientific Conference (1–3 June 2005). Part 1 (2005), pp. 70-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MMKZ_2005_a20,
     author = {N. N. Berendeev and A. C. Lyubimov},
     title = {{\CYRS}{\cyrt}{\cyrr}{\cyru}{\cyrk}{\cyrt}{\cyru}{\cyrr}{\cyrn}{\cyra}{\cyrya} {\cyrm}{\cyro}{\cyrd}{\cyre}{\cyrl}{\cyrsftsn} {\cyrd}{\cyri}{\cyrs}{\cyrk}{\cyrr}{\cyre}{\cyrt}{\cyrn}{\cyro}{\cyrg}{\cyro} {\cyrr}{\cyro}{\cyrs}{\cyrt}{\cyra} {\cyrm}{\cyri}{\cyrk}{\cyrr}{\cyro}{\cyrt}{\cyrr}{\cyre}{\cyrshch}{\cyri}{\cyrn} {\cyrp}{\cyrr}{\cyri} {\cyrm}{\cyrn}{\cyro}{\cyrg}{\cyro}{\cyrc}{\cyri}{\cyrk}{\cyrl}{\cyro}{\cyrv}{\cyro}{\cyrishrt} {\cyru}{\cyrs}{\cyrt}{\cyra}{\cyrl}{\cyro}{\cyrs}{\cyrt}{\cyri}},
     journal = {Matematicheskoe Modelirovanie i Kraevye Zadachi},
     pages = {70--73},
     publisher = {mathdoc},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMKZ_2005_a20/}
}
TY  - JOUR
AU  - N. N. Berendeev
AU  - A. C. Lyubimov
TI  - Структурная модель дискретного роста микротрещин при многоцикловой усталости
JO  - Matematicheskoe Modelirovanie i Kraevye Zadachi
PY  - 2005
SP  - 70
EP  - 73
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMKZ_2005_a20/
LA  - ru
ID  - MMKZ_2005_a20
ER  - 
%0 Journal Article
%A N. N. Berendeev
%A A. C. Lyubimov
%T Структурная модель дискретного роста микротрещин при многоцикловой усталости
%J Matematicheskoe Modelirovanie i Kraevye Zadachi
%D 2005
%P 70-73
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMKZ_2005_a20/
%G ru
%F MMKZ_2005_a20
N. N. Berendeev; A. C. Lyubimov. Структурная модель дискретного роста микротрещин при многоцикловой усталости. Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Second All-Russian Scientific Conference (1–3 June 2005). Part 1 (2005), pp. 70-73. http://geodesic.mathdoc.fr/item/MMKZ_2005_a20/

[1] Domozhirov L. I., Makhutov N. A., “Ierarkhiya treschin v mekhanike tsiklicheskogo razrusheniya”, MTT, 1999, no. 5, 17–26

[2] Berendeev N. N., Zorin V. A., Lyubimov A. K., “Otsenka kharakteristik raspredeleniya ustalostnoi dolgovechnosti s ispolzovaniem dvukhstadiinoi modeli nakopleniya povrezhdenii”, Tr. Vseros. nauch. konf. Ch. 1., Matematicheskoe modelirovanie i kraevye zadachi, SamGTU, Samara, 2004, 40–42

[3] Berendeev N. N., Zorin V. A., Lyubimov A. K., “Poluchenie kachestvennykh otsenok funktsii raspredeleniya ustalostnoi dolgovechnosti s ispolzovaniem dvukhstadiinoi modeli nakopleniya povrezhdenii”, Vestnik NNGU. Seriya: Mekhanika, 2004, no. 1(6), 169–176

[4] Ivanova V. S., Terentev V. F., Priroda ustalosti metallov, Metallurgiya, M., 1975, 456 pp.

[5] Ostash O. P., Panasyuk V. V., “A unified approach to fatigue macrocrack initiation and propagation”, Int. J. Fatigue, 25 (2003), 703–708 | DOI

[6] Lyubimov A. K., Berendeev N. N., Chuvildeev V. N., “Strukturnaya model, opisyvayuschaya zarozhdenie treschiny”, Izvestiya AIN RF, 2001, Yub. tom, 181–199

[7] De Vit R., Kontinualnaya teoriya disklinatsii, Mir, M., 1977, 208 pp.