Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMKZ_2004_1_a24, author = {A. Yu. Zemlyanova}, title = {{\CYRO}{\cyrb} {\cyro}{\cyrd}{\cyrn}{\cyro}{\cyrm} {\cyrs}{\cyrp}{\cyro}{\cyrs}{\cyro}{\cyrb}{\cyre} {\cyru}{\cyrs}{\cyri}{\cyrl}{\cyre}{\cyrn}{\cyri}{\cyrya} {\cyrp}{\cyrl}{\cyra}{\cyrs}{\cyrt}{\cyri}{\cyrn}{\cyrery} {\cyrs} {\cyrp}{\cyrr}{\cyrya}{\cyrm}{\cyro}{\cyrl}{\cyri}{\cyrn}{\cyre}{\cyrishrt}{\cyrn}{\cyro}{\cyrishrt} {\cyrt}{\cyrr}{\cyre}{\cyrshch}{\cyri}{\cyrn}{\cyro}{\cyrishrt}}, journal = {Matematicheskoe Modelirovanie i Kraevye Zadachi}, pages = {90--94}, publisher = {mathdoc}, volume = {1}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMKZ_2004_1_a24/} }
A. Yu. Zemlyanova. Об одном способе усиления пластины с прямолинейной трещиной. Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the All-Russian Scientific Conference (26–28 May 2004). Part 1, Tome 1 (2004), pp. 90-94. http://geodesic.mathdoc.fr/item/MMKZ_2004_1_a24/
[1] Muskhelishvili N. I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti, Nauka, M., 1966, 707 pp.
[2] Parton V. Z., Perlin P. I., Metody matematicheskoi teorii uprugosti, Nauka, M., 1981, 688 pp. | MR