Modeling of stochastic filtration processes in lattice systems
Matematičeskoe modelirovanie i čislennye metody (2017), pp. 17-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of the paper was to formulate and study the system of kinetic equations modeling the process of diffusion filtration based on a stochastic approach. Within the research we proved the theorem of existence and uniqueness of the solution with respect to the case of continuous density, obtained the solutions in uniformly convergent and asymptotic series and examined its behavior at infinity. Moreover, we considered the specific cases of density of the Delta-function type and uniform distribution. As a result, the finite-difference scheme for solving the corresponding Cauchy problem on finite time intervals is built and justified. The results of computer simulation are also given.
Mots-clés : filtration, diffusion, existence
Keywords: kinetics, stochastic equation, uniqueness, numerical method.
@article{MMCM_2017_a1,
     author = {R. V. Harutyunyan},
     title = {Modeling of stochastic filtration processes in lattice systems},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {17--30},
     publisher = {mathdoc},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2017_a1/}
}
TY  - JOUR
AU  - R. V. Harutyunyan
TI  - Modeling of stochastic filtration processes in lattice systems
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2017
SP  - 17
EP  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMCM_2017_a1/
LA  - ru
ID  - MMCM_2017_a1
ER  - 
%0 Journal Article
%A R. V. Harutyunyan
%T Modeling of stochastic filtration processes in lattice systems
%J Matematičeskoe modelirovanie i čislennye metody
%D 2017
%P 17-30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMCM_2017_a1/
%G ru
%F MMCM_2017_a1
R. V. Harutyunyan. Modeling of stochastic filtration processes in lattice systems. Matematičeskoe modelirovanie i čislennye metody (2017), pp. 17-30. http://geodesic.mathdoc.fr/item/MMCM_2017_a1/