Mathematical modeling of breathers of two-dimensional O(3) nonlinear sigma model
Matematičeskoe modelirovanie i čislennye metody (2016), pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The study examined the formation and evolution of stationary and moving breathers of a two-dimensional O(3) nonlinear sigma model. We detected analytical form of trial functions of two-dimensional sine-Gordon equations, which over time evolve into periodic (breather) solutions. According to the solutions found, by adding the rotation to an A3-field vector in isotopic space $S^2$ we obtained the solutions for the O(3) nonlinear sigma model. Furthermore, we conducted the numerical study of the solutions dynamics and showed their stability in a stationary and a moving state for quite a long time, although in the presence of a weak radiation.
Keywords: two-dimensional breather, nonlinear sigma model, averaged lagrangian, isotopic space, numerical simulation.
Mots-clés : sine-gordon equation
@article{MMCM_2016_a0,
     author = {F. Sh. Shokirov},
     title = {Mathematical modeling of breathers of two-dimensional {O(3)} nonlinear sigma model},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {3--16},
     publisher = {mathdoc},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2016_a0/}
}
TY  - JOUR
AU  - F. Sh. Shokirov
TI  - Mathematical modeling of breathers of two-dimensional O(3) nonlinear sigma model
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2016
SP  - 3
EP  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMCM_2016_a0/
LA  - ru
ID  - MMCM_2016_a0
ER  - 
%0 Journal Article
%A F. Sh. Shokirov
%T Mathematical modeling of breathers of two-dimensional O(3) nonlinear sigma model
%J Matematičeskoe modelirovanie i čislennye metody
%D 2016
%P 3-16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMCM_2016_a0/
%G ru
%F MMCM_2016_a0
F. Sh. Shokirov. Mathematical modeling of breathers of two-dimensional O(3) nonlinear sigma model. Matematičeskoe modelirovanie i čislennye metody (2016), pp. 3-16. http://geodesic.mathdoc.fr/item/MMCM_2016_a0/