Simulation of gas flow through the laminar boundary layer on the hemisphere surface in a supersonic air flow
Matematičeskoe modelirovanie i čislennye metody (2014), pp. 88-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article presents estimated accuracy of the engineering design procedure of the mass flow rate of gas through the laminar boundary layer on a hemisphere of [1]. A similar engineering method of extra accuracy is proposed.
Keywords: Mass flow, boundary layer, air flow, gas flow, thermochemical equilibrium, heat and mass transfer.
@article{MMCM_2014_a5,
     author = {V. V. Gorskii and V. A. Sysenko},
     title = {Simulation of gas flow through the laminar boundary layer on the hemisphere surface in a supersonic air flow},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {88--94},
     publisher = {mathdoc},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2014_a5/}
}
TY  - JOUR
AU  - V. V. Gorskii
AU  - V. A. Sysenko
TI  - Simulation of gas flow through the laminar boundary layer on the hemisphere surface in a supersonic air flow
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2014
SP  - 88
EP  - 94
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMCM_2014_a5/
LA  - ru
ID  - MMCM_2014_a5
ER  - 
%0 Journal Article
%A V. V. Gorskii
%A V. A. Sysenko
%T Simulation of gas flow through the laminar boundary layer on the hemisphere surface in a supersonic air flow
%J Matematičeskoe modelirovanie i čislennye metody
%D 2014
%P 88-94
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMCM_2014_a5/
%G ru
%F MMCM_2014_a5
V. V. Gorskii; V. A. Sysenko. Simulation of gas flow through the laminar boundary layer on the hemisphere surface in a supersonic air flow. Matematičeskoe modelirovanie i čislennye metody (2014), pp. 88-94. http://geodesic.mathdoc.fr/item/MMCM_2014_a5/

[1] Zemlyanskiy B.A., Lunev V.V., Vlasov V.I., Thermal convection of Aircraft, Fizmatlit Publ., Moscow, 2014, 377 pp.

[2] Predvoditelev A.S., Stupochenko E.V., Pleshanov A.S., Tables of air thermodynamic functions (for temperatures etween 200 and 6000 K and pressures from 0.00001 to 100 atm), AN SSSR Publ., Moscow, 1962, 268 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=155018'>155018</ext-link>

[3] Girshfelder G., Kertis Ch., Berd R., Molecular theory of gases and liquids, Inostrannaya literatura Publ., Moscow, 1961, 929 pp.

[4] Gorskiy V.V., Fedorov S.N., Journal of Engineering Thermophysics, 80:5 (2007), 97–101

[5] Sokolova I.A., “Transfer coefficients and collision integrals of air and its components”, Physical kinetics. Aerophysical research, 1974, no. 4, 39–104

[6] Capitelli M., Colonna G., Gorse C., D’Angola A., “Transport properties of high temperature air in local thermodynamic equilibrium”, The European Physical Journal, 2000, no. 11, 279–289

[7] Gorskiy V.V., Journal of Computational Mathematics and Computational Physics RAS, 47:6 (2007), 939–943 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2743059'>2743059</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1292.65012'>1292.65012</ext-link>

[8] Avduevskiy V.S., Galitseyskiy B.M., Glebov G.A., Fundamentals of heat transfer in the aviation and aerospace technology, Masinostroenie, Moscow, 1975, 624 pp.