Simulation of wave action on horizontal structure elements in the upper layer of stratified flow
Matematičeskoe modelirovanie i čislennye metody (2014), pp. 74-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article describes performed simulation of force action on streamlined horizontal elements of engineering structures in the upper layer of sharply stratified flow associated with the generation of waves at the interface between the liquid layers. We obtained an integral representation of the wave drag and lift, made numerical calculations for a real marine environment. The conditions under which there is a significant increase in the hydrodynamic reactions on streamlined structural elements were revealed.
Keywords: Extended horizontal obstacle in the flow, stratified flow, wave drag, lift.
@article{MMCM_2014_a4,
     author = {I. Yu. Vladimirov and N. N. Korchagin and A. S. Savin},
     title = {Simulation of wave action on horizontal structure elements in the upper layer of stratified flow},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {74--87},
     publisher = {mathdoc},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2014_a4/}
}
TY  - JOUR
AU  - I. Yu. Vladimirov
AU  - N. N. Korchagin
AU  - A. S. Savin
TI  - Simulation of wave action on horizontal structure elements in the upper layer of stratified flow
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2014
SP  - 74
EP  - 87
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMCM_2014_a4/
LA  - ru
ID  - MMCM_2014_a4
ER  - 
%0 Journal Article
%A I. Yu. Vladimirov
%A N. N. Korchagin
%A A. S. Savin
%T Simulation of wave action on horizontal structure elements in the upper layer of stratified flow
%J Matematičeskoe modelirovanie i čislennye metody
%D 2014
%P 74-87
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMCM_2014_a4/
%G ru
%F MMCM_2014_a4
I. Yu. Vladimirov; N. N. Korchagin; A. S. Savin. Simulation of wave action on horizontal structure elements in the upper layer of stratified flow. Matematičeskoe modelirovanie i čislennye metody (2014), pp. 74-87. http://geodesic.mathdoc.fr/item/MMCM_2014_a4/

[1] Vladimirov I.Yu., Korchagin N.N., Savin A.S., Mathematical Modeling and Numerical Methods, 2014, no. 2, 84–98 pp.

[2] Zhmur V.V., Sapov D.A., “Catastrophic suspension currents in the bottom layer of the ocean”, World Ocean. Ocean geology and tectonics. Catastrophic events in the ocean, 1 (2013), 499–524 pp.

[3] Korchagin N.N., Savin A.S., Savina E.O., Oceanology, 2009, no. 3, 348–354

[4] Vladimirov I.Yu., Korchagin N.N., Savin A.S., Reports of RAS, 2011, no. 6, 826–829 <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1249.76020'>1249.76020</ext-link>

[5] Vladimirov I.Yu., Korchagin N.N., Savin A.S., Savina E.O., Oceanology, 2011, no. 6, 974–983

[6] Vladimirov I.Yu., Korchagin N.N., Savin A.S., Herald of the Bauman Moscow State Technical University. Natural Sciences, 2011, no. Mathematical Modeling, 114–135

[7] Vladimirov I.Yu., Korchagin N.N., Savin A.S., Oceanology, 2012, no. 6, 1–11

[8] Vladimirov I.Yu., Korchagin N.N., Savin A.S., Engineering Journal: Science and Innovations, 2:14 (2013) <ext-link ext-link-type='uri' href='http://engjournal.ru/catalog/appmath/hidden/609.pdf'>engjournal.ru/catalog/appmath/hidden/609.pdf</ext-link>

[9] Reznik S.N., Troitskaya Yu.I., MZhG. Fluid Dynamics, 1997, no. 2, 131–140 <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0901.76093'>0901.76093</ext-link>

[10] Kazakov V.I., Korotkov D.P., Serin B.V., Talanov V.I., Troitskaya Yu.I., FAO. Atmospheric and Oceanic Physics, 38:4 (2002), 504–514 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1924736'>1924736</ext-link>

[11] Yermanuk E.V., Gavrilov N.V., Journal of Applied Mechanics and Technical Physics, 40:2 (1999), 79-–85 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1751544'>1751544</ext-link>

[12] Yermanuk E.V., Gavrilov N.V., Journal of Applied Mechanics and Technical Physics, 46:6 (2005), 36–44

[13] Scase M.M., Dalziel S.B., “Internal wave fields and drag generated by a translating body in a stratified fluid.”, Journal of Fluid Mechanics, 498 (2004), 289–313 <ext-link ext-link-type='doi' href='https://doi.org/10.1017/S0022112003006815'>10.1017/S0022112003006815</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2256920'>2256920</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1050.76011'>1050.76011</ext-link>

[14] Greenslande M.D., “Drag on a sphere moving horizontally in a stratified fluid.”, Journal of Fluid Mechanics, 418 (2000), 339–350 <ext-link ext-link-type='doi' href='https://doi.org/10.1017/S0022112000001361'>10.1017/S0022112000001361</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1782300'>1782300</ext-link>

[15] Zhu G., Bearman P.W., Graham J.M.R., “Prediction of drag and lift using velocity and vorticity fields.”, Aeronautical Journal, 106:1064 (2002), 547–554