Nonlinear delay reaction-diffusion equations of hyperbolic type: Exact solutions and global instability
Matematičeskoe modelirovanie i čislennye metody (2014), pp. 53-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article we explored nonlinear hyperbolic delay reaction-diffusion equations with varying transfer coefficients. A number of generalized separable solutions were obtained. Most of the equations considered contain arbitrary functions. Global nonlinear instability conditions of solutions of hyperbolic delay reaction-diffusion systems were determined. The generalized Stokes problem for a linear delay diffusion equation with periodic boundary conditions was solved.
Mots-clés : Reaction-diffusion equations, exact solutions
Keywords: nonlinear delay differential equations, generalized separation of variables, nonlinear instability, global instability.
@article{MMCM_2014_a3,
     author = {A. D. Polyanin and V. G. Sorokin and A. V. Vyazmin},
     title = {Nonlinear delay reaction-diffusion equations of hyperbolic type: {Exact} solutions and global instability},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {53--73},
     publisher = {mathdoc},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2014_a3/}
}
TY  - JOUR
AU  - A. D. Polyanin
AU  - V. G. Sorokin
AU  - A. V. Vyazmin
TI  - Nonlinear delay reaction-diffusion equations of hyperbolic type: Exact solutions and global instability
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2014
SP  - 53
EP  - 73
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMCM_2014_a3/
LA  - ru
ID  - MMCM_2014_a3
ER  - 
%0 Journal Article
%A A. D. Polyanin
%A V. G. Sorokin
%A A. V. Vyazmin
%T Nonlinear delay reaction-diffusion equations of hyperbolic type: Exact solutions and global instability
%J Matematičeskoe modelirovanie i čislennye metody
%D 2014
%P 53-73
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMCM_2014_a3/
%G ru
%F MMCM_2014_a3
A. D. Polyanin; V. G. Sorokin; A. V. Vyazmin. Nonlinear delay reaction-diffusion equations of hyperbolic type: Exact solutions and global instability. Matematičeskoe modelirovanie i čislennye metody (2014), pp. 53-73. http://geodesic.mathdoc.fr/item/MMCM_2014_a3/

[1] Lykov A.V., Heat Conduction Theory, Vysshaya Shkola Publ., Moscow, 1967, 600 pp. <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0173.29602'>0173.29602</ext-link>

[2] Kutateladze S.S., Fundamentals of Heat Transfer Theory, Atomizdat Publ., Moscow, 1979, 416 pp.

[3] Polyanin A.D., Kutepov A.M., Vyazmin A.V., Kazenin D.A., Hydrodynamics, mass and heat transfer in chemical engineering, Taylor & Francis, London, 2002, 387 pp. <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1031.35001'>1031.35001</ext-link>

[4] Cattaneo C., “A form of heat conduction equation which eliminates the paradox of instantaneous propagation”, Comptes Rendus, 247 (1958), 431-433 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=95680'>95680</ext-link>

[5] Vernotte P., “Some possible complications in the phenomena of thermal conduction”, Comptes Rendus, 252 (1961), 2190–2191 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=128043'>128043</ext-link>

[6] Polyanin A.D., Vyazmin A.V., Zhurov A.I., Kazenin D.A., Handbook of Exact Solutions to the Equations of Heat and Mass Transfer, Faktorial Publ., Moscow, 1998, 368 pp.

[7] Wu J., Theory and applications of partial functional differential equations, Springer, New York, 1996, 119 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1415838'>1415838</ext-link>

[8] Wu J., Zou X., “Traveling wave fronts of reaction-diffusion systems with delay”, J. Dynamics & Dif. Equations, 13:3 (2001), 651–687 <ext-link ext-link-type='doi' href='https://doi.org/10.1023/A:1016690424892'>10.1023/A:1016690424892</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1845097'>1845097</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0996.34053'>0996.34053</ext-link>

[9] Faria T., Trofimchuk S., “Nonmonotone travelling waves in a single species reaction– diffusion equation with delay”, J. Dif. Equations, 228 (2006), 357–376 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jde.2006.05.006'>10.1016/j.jde.2006.05.006</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2254435'>2254435</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1217.35102'>1217.35102</ext-link>

[10] Smith H.L., An introduction to delay differential equations with applications to the life sciences, Springer, New York, 2010, 182 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2724792'>2724792</ext-link>

[11] Polyanin A.D., Zhurov A.I., “Exact separable solutions of delay reaction-diffusion equations and other nonlinear partial functional-differential equations”, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 409–416 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cnsns.2013.07.019'>10.1016/j.cnsns.2013.07.019</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3111620'>3111620</ext-link>

[12] Kyrychko Y.N., Hogan S.J., “On the use of delay equations in engineering applications.”, J. of Vibration and Control, 16:7 (2010), 943–960 <ext-link ext-link-type='doi' href='https://doi.org/10.1177/1077546309341100'>10.1177/1077546309341100</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2848163'>2848163</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1269.70002'>1269.70002</ext-link>

[13] Polyanin A.D., Zhurov A.I., “Exact solutions of linear and nonlinear differentialdifference heat and diffusion equations with finite relaxation time”, Int. J. Non-Linear Mechanics, 54 (2013), 115–126 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ijnonlinmec.2013.03.011'>10.1016/j.ijnonlinmec.2013.03.011</ext-link>

[14] Polyanin A.D., Zhurov A.I., “New generalized and functional separable solutions to nonlinear delay reaction-diffusion equations”, Int. J. Non-Linear Mechanics, 59 (2014), 16–22 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ijnonlinmec.2013.10.008'>10.1016/j.ijnonlinmec.2013.10.008</ext-link>

[15] Polyanin A.D., Vyazmin A.V., Theoretical Foundation of Chemical Engineering, 47:3 (2013), 217–224 <ext-link ext-link-type='doi' href='https://doi.org/10.7868/S0040357113030081'>10.7868/S0040357113030081</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3114022'>3114022</ext-link>

[16] Polyanin A.D., Vyazmin A.V., Chemistry and Chemical Technology Research-Engineering Journal, 56:9 (2013), 102–108

[17] Polyanin A.D., Zhurov A.I., “Generalized and functional separable solutions to nonlinear delay Klein – Gordon equations”, Communications in Nonlinear Science and Numerical Simulation, 19:8 (2014), 2676–2689 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cnsns.2013.12.021'>10.1016/j.cnsns.2013.12.021</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3168062'>3168062</ext-link>

[18] Polyanin A.D., Sorokin V.G., Bulletin of National Research Nuclear University (MIFI), 3:2 (2014), 141–148 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3237634'>3237634</ext-link>

[19] Polyanin A.D., Vyazmin A.V., Theoretical Foundation of Chemical Engineering, 47:4 (2013), 321–329 <ext-link ext-link-type='doi' href='https://doi.org/10.7868/S004035711304009X'>10.7868/S004035711304009X</ext-link>

[20] Polyanin A.D., Zhurov A.I., “The functional constraints method: Application to non-linear delay reaction-diffusion equations with varying transfer coefficients, Int”, J. Non-Linear Mechanics, 67 (2014), 267–277 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ijnonlinmec.2014.09.008'>10.1016/j.ijnonlinmec.2014.09.008</ext-link>

[21] Polyanin A.D., Zhurov A.I., “Nonlinear delay reaction-diffusion equations with varying transfer coefficients: Exact methods and new solutions”, Applied Mathematics Letters, 37 (2014), 43–48 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.aml.2014.05.010'>10.1016/j.aml.2014.05.010</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3231724'>3231724</ext-link>

[22] Smith H.L., Zhao X.Q., “Global asymptotic stability of travelling waves in delayed reaction-diffusion equations.”, SIAM J. Math. Anal, 31 (2000), 514–534 <ext-link ext-link-type='doi' href='https://doi.org/10.1137/S0036141098346785'>10.1137/S0036141098346785</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1740724'>1740724</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0941.35125'>0941.35125</ext-link>

[23] Mei M., So J., Li M., Shen S., “Asymptotic stability of travelling waves for Nicholson’s blowflies equation with diffusion”, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 579–594 <ext-link ext-link-type='doi' href='https://doi.org/10.1017/S0308210500003358'>10.1017/S0308210500003358</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2068117'>2068117</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1059.34019'>1059.34019</ext-link>

[24] Polyanin A.D., Engineering Journal: Science and Innovation, 16:4 (2013), 1–14

[25] Polyanin A.D., Zhurov A.I., “Non-linear instability and exact solutions to some delay reaction-diffusion systems”, Int. J. Non-Linear Mechanics, 62 (2014), 33–40 pp. <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ijnonlinmec.2014.02.003'>10.1016/j.ijnonlinmec.2014.02.003</ext-link>

[26] Bellman R., Cooke K.L., Differential-Difference Equations, Academic, New York, 1967, 548 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=221045'>221045</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0163.10501'>0163.10501</ext-link>

[27] Driver R.D., Ordinary and delay differential equations, Springer, New York, 1977, 505 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=477368'>477368</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0374.34001'>0374.34001</ext-link>

[28] Kuang Y., Delay differential equations with applications in population dynamics, Academic Press, Boston, 1993, 398 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1218880'>1218880</ext-link>

[29] Cui B.T., Yu Y.H., Lin S.Z., “Oscillations of solutions of delay hyperbolic differential equations”, Acta Math. Appl. Sinica, 19 (1996), 80–88 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1407154'>1407154</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0868.35067'>0868.35067</ext-link>

[30] Wang J., Meng F., Liu S., “Interval oscillation criteria for second order partial differential equations with delays”, J. Comp. & Appl. Math., 212:2 (2008), 397–405 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cam.2006.12.015'>10.1016/j.cam.2006.12.015</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2383029'>2383029</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1135.35090'>1135.35090</ext-link>

[31] Cui S., Xu Z., “Interval oscillation theorems for second order nonlinear partial delay differential equations”, Dif. Equations & Appl., 1:3 (2009), 379–391 <ext-link ext-link-type='doi' href='https://doi.org/10.7153/dea-01-21'>10.7153/dea-01-21</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2554974'>2554974</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1169.35382'>1169.35382</ext-link>

[32] Jackiewicza Z., Zubik-Kowal B., “Spectral collocation and waveform relaxation methods for nonlinear delay partial differential equations”, Applied Numerical Mathematics, 56:3-4 (2006), 433–443 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.apnum.2005.04.021'>10.1016/j.apnum.2005.04.021</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2207601'>2207601</ext-link>

[33] Zhang Q., Zhang C., “A compact difference scheme combined with extrapolation techniques for solving a class of neutral delay parabolic differential equations”, Applied Mathematics Letters, 26:2 (2013), 306–312 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.aml.2012.09.015'>10.1016/j.aml.2012.09.015</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2994628'>2994628</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1256.65084'>1256.65084</ext-link>

[34] Polyanin A.D., Zaitsev V.F., Handbook of nonlinear partial differential equations, 2nd edition., Chapman & Hall/CRC Press, Boca Raton, 2012, 1912 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2865542'>2865542</ext-link>

[35] Galaktionov V.A., Svirshchevskii S.R., Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics., Chapman & Hall/CRC Press, Boca Raton, 2007, 498 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2272794'>2272794</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1153.35001'>1153.35001</ext-link>

[36] Pucci E., Saccomandi G., “Evolution equations, invariant surface conditions and functional separation of variables”, Physica D: Nonlinear Phenomena, 139 (2000), 28–47 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0167-2789(99)00224-9'>10.1016/S0167-2789(99)00224-9</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1744797'>1744797</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0989.35011'>0989.35011</ext-link>

[37] Polyanin A.D., Zhurov A.I., “Functional constraints method for constructing exact solutions to delay reaction-diffusion equations and more complex nonlinear equations”, Communications in Nonlinear Science and Numerical Simulation, 19:3 (2014), 417–430 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3111621'>3111621</ext-link>