Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMCM_2014_a1, author = {Yu. I. Dimitrienko and E. A. Gubareva and Yu. V. Yurin}, title = {Asymptotic theory of thermocreep for multilayer thin plates}, journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody}, pages = {18--36}, publisher = {mathdoc}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMCM_2014_a1/} }
TY - JOUR AU - Yu. I. Dimitrienko AU - E. A. Gubareva AU - Yu. V. Yurin TI - Asymptotic theory of thermocreep for multilayer thin plates JO - Matematičeskoe modelirovanie i čislennye metody PY - 2014 SP - 18 EP - 36 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMCM_2014_a1/ LA - ru ID - MMCM_2014_a1 ER -
Yu. I. Dimitrienko; E. A. Gubareva; Yu. V. Yurin. Asymptotic theory of thermocreep for multilayer thin plates. Matematičeskoe modelirovanie i čislennye metody (2014), pp. 18-36. http://geodesic.mathdoc.fr/item/MMCM_2014_a1/
[1] Gureeva N.A., “Proceedings of Higher Educational Institutions”, Machine Building, 2007, no. 5, 23–28
[2] Popov B.G., Calculation of multilayer structures by variational-matrix methods, BMSTU Publ., Moscow, 1993, 294 pp.
[3] Sheshenin S.V, “Proc”, of the Russ. Acad. Sci. Mech. Rigid Body, 2006, no. 6, 71–79
[4] Sheshenin S.V., Khodos O.A., Computational Continuum Mechanics, 4:2 (2011), 128–139
[5] Kohn R.V., Vogelius M., “A new model of thin plates with rapidly varying thickness”, Int. J. Solids and Struct., 20:4 (1984), 333–350 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0020-7683(84)90044-1'>10.1016/0020-7683(84)90044-1</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0532.73055'>0532.73055</ext-link>
[6] Panasenko G.P., Reztsov M.V., Reports of Acad. Sci. USSR, 294:5 (1987), 1061–1065 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=898314'>898314</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0644.73050'>0644.73050</ext-link>
[7] Levinski T., Telega J.J., Plates, laminates and shells. Asymptotic analysis and homogenization., World Sci. Publ., Singapore; London, 2000, 739 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1758600'>1758600</ext-link>
[8] Kolpakov A.G., Homogenized models for thin-walled nonhomogeneous structures with initial stresses, Springer Verlag, Berlin, 2004, 228 pp.
[9] Dimitrienko Yu.I., Herald of the Bauman Moscow State Technical University. Series: Natural Science, 2012, no. 3, 86–100
[10] Dimitrienko Yu.I., Yakovlev D.O., Engineering Journal: Science and Innovation, 2013
[11] Dimitrienko Yu.I., Gubareva E.A., Sborschikov S.V., Mathematical Modeling and Computational Methods, 2014, no. 1, 36–57
[12] Dimitrienko Yu.I., Gubareva E.A., Yakovlev D.O., Electronic Scientific and Technical Joural, 2014, no. 10
[13] Dimitrienko Yu.I., Yakovlev N.O., Erasov V.S., Fedonyuk N.N., Sborschikov S.V., Gubareva E.A., Krylov V.D. Grigoriev M.M. Prozorovskiy A.A., Composites and Nanostructures, 6:1 (2014), 32–48 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3247859'>3247859</ext-link>
[14] Dimitrienko Yu.I., Continuum mechanics. Fundamentals of solid mechanics., Moscow, 2013, 624 pp.
[15] Dimitrienko Yu.I., Continuum mechanics. Tensor analysis, BMSTU Publ., Moscow, 2011, 367 pp.