Asymptotic theory of thermocreep for multilayer thin plates
Matematičeskoe modelirovanie i čislennye metody (2014), pp. 18-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

The suggested thermocreep theory for thin multilayer plates is based on analysis of general three dimensional nonlinear theory of thermalcreep by constructing asymptotic expansions in terms of a small parameter being the ratio of a plate thickness and a characteristic length. Here we do not introduce any hypotheses on a distribution character for displacements and stresses through the thickness. Local problems were formulated for finding stresses in all structural elements of a plate. It was shown that the global (averaged by the certain rules) equations of the plate theory were similar to equations of the Kirchhoff–Love plate theory, but they differed by a presence of the three-order derivatives of longitudinal displacements. The method developed allows to calculate all six components of the stress tensor including transverse normal stresses and stresses of interlayer shear. For this purposes one needs to solve global equations of thermal creep theory for plates, and the rest calculations are reduced to analytical formulae use.
Keywords: Asymptotic theory, asymptotic expansions, thin multilayer plates, theory of thermocreep, local problems.
@article{MMCM_2014_a1,
     author = {Yu. I. Dimitrienko and E. A. Gubareva and Yu. V. Yurin},
     title = {Asymptotic theory of thermocreep for multilayer thin plates},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {18--36},
     publisher = {mathdoc},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2014_a1/}
}
TY  - JOUR
AU  - Yu. I. Dimitrienko
AU  - E. A. Gubareva
AU  - Yu. V. Yurin
TI  - Asymptotic theory of thermocreep for multilayer thin plates
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2014
SP  - 18
EP  - 36
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMCM_2014_a1/
LA  - ru
ID  - MMCM_2014_a1
ER  - 
%0 Journal Article
%A Yu. I. Dimitrienko
%A E. A. Gubareva
%A Yu. V. Yurin
%T Asymptotic theory of thermocreep for multilayer thin plates
%J Matematičeskoe modelirovanie i čislennye metody
%D 2014
%P 18-36
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMCM_2014_a1/
%G ru
%F MMCM_2014_a1
Yu. I. Dimitrienko; E. A. Gubareva; Yu. V. Yurin. Asymptotic theory of thermocreep for multilayer thin plates. Matematičeskoe modelirovanie i čislennye metody (2014), pp. 18-36. http://geodesic.mathdoc.fr/item/MMCM_2014_a1/

[1] Gureeva N.A., “Proceedings of Higher Educational Institutions”, Machine Building, 2007, no. 5, 23–28

[2] Popov B.G., Calculation of multilayer structures by variational-matrix methods, BMSTU Publ., Moscow, 1993, 294 pp.

[3] Sheshenin S.V, “Proc”, of the Russ. Acad. Sci. Mech. Rigid Body, 2006, no. 6, 71–79

[4] Sheshenin S.V., Khodos O.A., Computational Continuum Mechanics, 4:2 (2011), 128–139

[5] Kohn R.V., Vogelius M., “A new model of thin plates with rapidly varying thickness”, Int. J. Solids and Struct., 20:4 (1984), 333–350 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0020-7683(84)90044-1'>10.1016/0020-7683(84)90044-1</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0532.73055'>0532.73055</ext-link>

[6] Panasenko G.P., Reztsov M.V., Reports of Acad. Sci. USSR, 294:5 (1987), 1061–1065 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=898314'>898314</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0644.73050'>0644.73050</ext-link>

[7] Levinski T., Telega J.J., Plates, laminates and shells. Asymptotic analysis and homogenization., World Sci. Publ., Singapore; London, 2000, 739 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1758600'>1758600</ext-link>

[8] Kolpakov A.G., Homogenized models for thin-walled nonhomogeneous structures with initial stresses, Springer Verlag, Berlin, 2004, 228 pp.

[9] Dimitrienko Yu.I., Herald of the Bauman Moscow State Technical University. Series: Natural Science, 2012, no. 3, 86–100

[10] Dimitrienko Yu.I., Yakovlev D.O., Engineering Journal: Science and Innovation, 2013

[11] Dimitrienko Yu.I., Gubareva E.A., Sborschikov S.V., Mathematical Modeling and Computational Methods, 2014, no. 1, 36–57

[12] Dimitrienko Yu.I., Gubareva E.A., Yakovlev D.O., Electronic Scientific and Technical Joural, 2014, no. 10

[13] Dimitrienko Yu.I., Yakovlev N.O., Erasov V.S., Fedonyuk N.N., Sborschikov S.V., Gubareva E.A., Krylov V.D. Grigoriev M.M. Prozorovskiy A.A., Composites and Nanostructures, 6:1 (2014), 32–48 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3247859'>3247859</ext-link>

[14] Dimitrienko Yu.I., Continuum mechanics. Fundamentals of solid mechanics., Moscow, 2013, 624 pp.

[15] Dimitrienko Yu.I., Continuum mechanics. Tensor analysis, BMSTU Publ., Moscow, 2011, 367 pp.