Effective thermal conductivity of a composite in case of inclusions shape deviations from spherical ones
Matematičeskoe modelirovanie i čislennye metody (2014), pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of mathematical model of thermal interaction between inclusion and the matrix we estimated influence of inclusions deviations from spherical shape on the effective thermal conductivity coefficient of the composite and associated with such deviation a possible occurrence of the anisotropy of the composite with respect to the property of thermal conductivity. Using the dual variational formulation of the stationary problem of heat conduction in an inhomogeneous body we built bilateral estimates of effective thermal conductivity.
Mots-clés : Composite, inclusion
Keywords: effective thermal conductivity, mathematical model.
@article{MMCM_2014_a0,
     author = {V. S. Zarubin and G. N. Kuvyrkin and I. Yu. Savelyeva},
     title = {Effective thermal conductivity of a composite in case of inclusions shape deviations from spherical ones},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {3--17},
     publisher = {mathdoc},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2014_a0/}
}
TY  - JOUR
AU  - V. S. Zarubin
AU  - G. N. Kuvyrkin
AU  - I. Yu. Savelyeva
TI  - Effective thermal conductivity of a composite in case of inclusions shape deviations from spherical ones
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2014
SP  - 3
EP  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMCM_2014_a0/
LA  - ru
ID  - MMCM_2014_a0
ER  - 
%0 Journal Article
%A V. S. Zarubin
%A G. N. Kuvyrkin
%A I. Yu. Savelyeva
%T Effective thermal conductivity of a composite in case of inclusions shape deviations from spherical ones
%J Matematičeskoe modelirovanie i čislennye metody
%D 2014
%P 3-17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMCM_2014_a0/
%G ru
%F MMCM_2014_a0
V. S. Zarubin; G. N. Kuvyrkin; I. Yu. Savelyeva. Effective thermal conductivity of a composite in case of inclusions shape deviations from spherical ones. Matematičeskoe modelirovanie i čislennye metody (2014), pp. 3-17. http://geodesic.mathdoc.fr/item/MMCM_2014_a0/

[1] Chudnovskiy A.F., Thermophysical characteristics of dispersed materials, Fizmatgiz Publ., Moscow, 1962, 456 pp.

[2] Missenard A, Conductivité thermique des solides, liquides, gaz et de leurs mélanges, Editions Eyrolles, Paris, 1968, 464 pp.

[3] Dul'nev G.N., Zarichnyak Yu.P., “Heat conductivity of mixes and composite materials”, Leningrad, Energiya Publ., 1974

[4] Han Z., Fina A., “Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review”, Progress in Polymer Science, 7 (2011), 914–944 pp.

[5] Pierson H.O., Handbook of Carbon, Graphite, Diamond and Fullerences: Properties, Processing and Applications, Noyes Publications, New Jersey, 2000

[6] Wypych G., Handbook of Fillers: Physical Properties of Fillers and Filled Materials, ChemTec Publishing, Toronto, 2000

[7] Wang J., Carson J.K., North M.F., Cleland D.J., “A new structural model of effective thermal conductivity for 92 heterogeneous materials with cocontinuous phases”, Int. J. Heat Mass. Trans., 51 (2008), 2389–2397 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ijheatmasstransfer.2007.08.028'>10.1016/j.ijheatmasstransfer.2007.08.028</ext-link>

[8] Kats E.A., Fullerena, carbon nanotubes and nanoclusters. Family tree of forms and ideas., LKI Publ., Moscow, 2008, 296 pp.

[9] Dresselhaus M.S., Dresselhaus G., Eklund P.C., Science of fullerenes and carbon nanotubes, Academic Press, San Diego, 1996

[10] Zarubin V.S., Mathematical modeling in equipment, BMSTU Publ., Moscow, 2010, 496 pp.

[11] Zarubin V.S., Kuvyrkin G.N., Mathematical models of mechanics and electrodynamics of continuous medium, BMSTU Publ., Moscow, 2008, 512 pp.

[12] Maxwell C., Treatise on electricity and magnetism, Oxford, 1873

[13] Carslaw H., Jaeger J., Conduction of Heat in Solids 2nd ed., Oxford University Press, USA, 488 pp.

[14] Eshelby J.D., Continual theory of dislocations, Inostrannaya literatura Publ., Moscow, 1963, 248 pp.

[15] Zarubin V.S., Kuvyrkin G.N., “Herald of the Bauman Moscow State Technical University”, Series: Natural sciences, 2012, no. 3, 76–85 pp.

[16] Zarubin V.S., Kuvyrkin G.N., Savel'eva I.Yu., Heat conductivity of composites with spherical inclusions, LAMBERT Academic Publishing, Saarbrucken, Deutschland:, 2013, 77 pp.

[17] Zarubin V.S., Engineering methods of the solution of problems of heat conductivity, Energoatomizdat Publ., Moscow, 1983, 328 pp.

[18] Zarubin V.S., Kuvyrkin G.N., Mathematical Modeling and Computational Methods, 2014, no. 1, 5–17 pp.

[19] Abramovits M., Stigan I., Directory of Functions with Formulas, Graphs, and Mathematical Tables, Nauka, Moscow, 1979, 832 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=563328'>563328</ext-link>

[20] Shermergor T.D., Theory of elasticity of micronon-uniform environments, Nauka, Moscow, 1977, 400 pp.