Triangles of conflicts and hexamatrix games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 4, pp. 69-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper addresses one class of finite non-cooperative games (with finite numbers of strategies for each player) – Polymatrix Games of E.B. Yanovskaya. Namely, we study in detail the 3-players Polymatrix Games, the so-called Hexamatrix Games (HMG), which can be completely described by six matrices. A number of model examples of 3-sides real-life conflicts are presented and formulated as HMG. The possibility of using hexamatrix games to model economic relationships between three participants is demonstrated. To find a Nash Equilibrium in the formulated games, we use an optimization approach, when the problem is transformed into a nonconvex optimization problem with a bilinear structure. The latter is solved by the A.S. Strekalovsky’s Global Search Theory (GST) for (d.c.) optimization problems with objective functions represented as the difference of two convex functions.
Keywords: finite noncooperative games, Nash equilibrium, nonconvex optimization problems, local and global search algorithms, computational experiment.
Mots-clés : polymatrix games, hexamatrix game
@article{MGTA_2024_16_4_a3,
     author = {Andrey V. Orlov},
     title = {Triangles of conflicts and hexamatrix games},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {69--94},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2024_16_4_a3/}
}
TY  - JOUR
AU  - Andrey V. Orlov
TI  - Triangles of conflicts and hexamatrix games
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2024
SP  - 69
EP  - 94
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2024_16_4_a3/
LA  - ru
ID  - MGTA_2024_16_4_a3
ER  - 
%0 Journal Article
%A Andrey V. Orlov
%T Triangles of conflicts and hexamatrix games
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2024
%P 69-94
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2024_16_4_a3/
%G ru
%F MGTA_2024_16_4_a3
Andrey V. Orlov. Triangles of conflicts and hexamatrix games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 4, pp. 69-94. http://geodesic.mathdoc.fr/item/MGTA_2024_16_4_a3/

[1] Aleksei Savvateev, Teoriya igr. Lektsiya 2, https://www.youtube.com/watch?v=PoTvQ4MH7-s

[2] Aleksei Savvateev, Teoriya igr. Lektsiya 12, https://www.youtube.com/watch?v=ww8tgO0F6ww

[3] Bazara M., Shetti K., Nelineinoe programmirovanie. Teoriya i algoritmy, Mir, M., 1982

[4] Vasilev I.L., Klimentova K.B., Orlov A.V., “Parallelnyi globalnyi poisk ravnovesnykh situatsii v bimatrichnykh igrakh”, Vychislitelnye metody i programmirovanie, 8:2 (2007), 84–94 | MR

[5] Vasin A.A., Morozov V.V., Teoriya igr i modeli matematicheskoi ekonomiki, MAKS Press, M., 2005

[6] Golshtein E.G., Malkov U.Kh., Sokolov N.A., “Gibridnyi metod poiska resheniya bimatrichnykh igr”, Ekonomika i matematicheskie metody, 54:2 (2018), 89–103

[7] Orlov A.V., “Chislennoe issledovanie gibridnogo algoritma globalnogo poiska v geksamatrichnykh igrakh”, Vestnik Buryatskogo gosudarstvennogo universiteta. Matematika, informatika, 2023, no. 2, 14–29

[8] Orlov A.V., Batbileg S., “Oligopolisticheskii bankovskii sektor Mongolii i polimatrichnye igry trekh lits”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Ser. Matematika, 11 (2015), 80–95 | Zbl

[9] Orlov A.V., Strekalovskii A.S., “O chislennom poiske situatsii ravnovesiya v bimatrichnykh igrakh”, Zhurn. vychisl. matem. i matem. fiziki, 45:6 (2005), 981–995

[10] Neiman Dzh., Fon Morgenshtern O., Teoriya igr i ekonomicheskoe povedenie, Nauka, M., 1970 | MR

[11] Partkhasaratkhi T., Ragkhavan T., Nekotorye voprosy teorii igr dvukh lits, Mir, M., 1974

[12] Petrosyan L.A., Zenkevich N.A., Semina E.A., Teoriya igr, Vysshaya shkola, M., 1998

[13] Sokolov N.P., Prostranstvennye matritsy i ikh prilozheniya, Fizmatlit, M., 1960

[14] Strekalovskii A.S., Elementy nevypukloi optimizatsii, Nauka, Novosibirsk, 2003

[15] Strekalovskii A.S., “Minimiziruyuschie posledovatelnosti v zadache DC optimizatsii s ogranicheniyami”, Trudy Instituta matematiki i mekhaniki UrO RAN, 29, no. 3, 2023, 185–209 | Zbl

[16] Strekalovskii A.S., Orlov A.V., Bimatrichnye igry i bilineinoe programmirovanie, Fizmatlit, M., 2007

[17] Strekalovskii A.S., Enkhbat R., “Polimatrichnye igry i zadachi optimizatsii”, Avtomatika i telemekhanika, 2014, no. 4, 51–66 | MR | Zbl

[18] Yanovskaya E.B., “Situatsii ravnovesiya v polimatrichnykh igrakh”, Litovskii matematicheskii sbornik, 8 (1968), 381–384 | MR | Zbl

[19] Audet C., Belhaiza S., Hansen P., “Enumeration of all the extreme equilibria in game theory: bimatrix and polymatrix games”, J. of Optimization Theory and Applications, 129:3 (2006), 349–372 | DOI | MR | Zbl

[20] Batbileg S., Enkhbat R., “Global Optimization Approach to Game Theory”, J. of Mongolian Mathematical Society, 14 (2010), 2–11 | MR

[21] Batbileg S., Enkhbat R., “Global Optimization Approach to Nonzero Sum n Person Game”, Advanced Modeling and Optimization, 13:1 (2011), 59–66 | MR | Zbl

[22] Batbileg S., Tungalag N., Anikin A., Gornov A., Finkelstein E., “A global optimization algorithm for solving a four-person game”, Optimization Letters, 13 (2019), 587–596 | DOI | MR | Zbl

[23] Enkhbat R., Batbileg S., Anikin A., Tungalag N., Gornov A., “A Note on Solving 5-Person Game”, The Electronic International Journal of Advanced Modeling and Optimization, 19:2 (2017), 227–232 | Zbl

[24] Enkhbat R., Batbileg S., Tungalag N., Anikin A., Gornov A., “A Global Optimization Approach to Nonzero Sum Six-Person Game”, Frontiers in Games and Dynamic Games, 16, eds. D. Yeung, S. Luckraz, C. Leong, Birkhauser, Cham, 2020, 219–227 | DOI | MR | Zbl

[25] Enkhbat R., Tungalag N., Anikin A., Gornov A., “A Computational Method for Solving N-Person Game”, The Bulletin of Irkutsk State University. Series Mathematics, 20 (2017), 109–121 | DOI | MR | Zbl

[26] Enkhbat R., Tungalag N., Gornov A., Anikin A., “The Curvilinear Search Algorithm for Solving Three-Person Game”, DOOR-SUP 2016, CEUR Workshop Proceedings, 1623, eds. A. Kononov et al., 2016, 574–583

[27] Golshteyn E., Malkov U., Sokolov N., “Comparison of the Hybrid and Lemke-Howson Methods for Solving Bimatrix Games”, OPTIMA 2017 Conference, CEUR Workshop Proceedings, 1987, eds. Yu.G. Evtushenko et al., 2017, 224–232

[28] Golshteyn E., Malkov U., Sokolov N., “The Lemke-Howson Algorithm Solving Finite Non-Cooperative Three-Person Games in a Special Setting”, DEStech Transactions on Computer Science and Engineering, 2019, Suppl. vol., 265–272

[29] Kudryavtsev K., Malkov U., Zhukovskiy V., “Weak Berge Equilibrium”, MOTOR 2020, Communications in Computer and Information Science, eds. Y. Kochetov, I. Bykadorov, T. Gruzdeva, Springer, Cham, 2020, 231–243 | DOI | MR | Zbl

[30] Lemke C.E., Howson J.J., “Equilibrium points of bimatrix games”, Journal of the Society for Industrial and Applied Mathematics, 12 (1964), 413–423 | DOI | MR | Zbl

[31] Malkov U., Malkova V., “Effectiveness of Nash Equilibrium Search Algorithms in Four-Person Games in General and Multi-matrix Settings”, OPTIMA 2020, Communications in Computer and Information Science, 1340, eds. N.N. Olenev et al., Springer, Cham, 2020, 198–208 | DOI | MR | Zbl

[32] Mazalov V., Mathematical Game Theory and Applications, John Wiley Sons, 2014 | MR | Zbl

[33] Mills H., “Equilibrium points in finite games”, Journal of the Society for Industrial and Applied Mathematics, 8:2 (1960), 397–402 | DOI | MR | Zbl

[34] Orlov A.V., “Finding the Nash equilibria in randomly generated hexamatrix games”, Proc. of the 14th Intern. Symposium on Operational Research, SOR'17 (Bled, Slovenia, September 27-29, 2017), eds. L. Zadnik Stirn et. al., Slovenian Society Informatika, Section for Operational Research, Ljubljana, 2017, 507–512

[35] Orlov A.V., “Hybrid Global Search Algorithm with Genetic Blocks for Solving Hexamatrix Games”, The Bulletin of Irkutsk State University. Series Mathematics, 41 (2022), 40–56 | DOI | MR | Zbl

[36] Orlov A.V., Strekalovsky A.S., “On a Local Search for Hexamatrix Games”, DOOR-SUP 2016, CEUR Workshop Proceedings, 1623, eds. A. Kononov et al., 2016, 477–488 | MR

[37] Orlov A.V., Strekalovsky A.S., Batbileg S., “On computational search for Nash equilibrium in hexamatrix games”, Optimization Letters, 10:2 (2016), 369–381 | DOI | MR | Zbl

[38] Pang J.-S., “Three modeling paradigms in mathematical programming”, Mathematical Programming. Ser. B, 124:2 (2010), 297–323 | DOI | MR

[39] Strekalovsky A.S., “On Solving Optimization Problems with Hidden Nonconvex Structures”, Optimization in Science and Engineering, eds. T.M. Rassias, C.A. Floudas, S. Butenko, Springer, N.Y., 2014, 465–502 | DOI | MR | Zbl

[40] Quintas L.G., “A Note on Polymatrix Games”, International Journal of Game Theory, 18 (1989), 261–272 | DOI | MR | Zbl