Triangles of conflicts and hexamatrix games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 4, pp. 69-94

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper addresses one class of finite non-cooperative games (with finite numbers of strategies for each player) – Polymatrix Games of E.B. Yanovskaya. Namely, we study in detail the 3-players Polymatrix Games, the so-called Hexamatrix Games (HMG), which can be completely described by six matrices. A number of model examples of 3-sides real-life conflicts are presented and formulated as HMG. The possibility of using hexamatrix games to model economic relationships between three participants is demonstrated. To find a Nash Equilibrium in the formulated games, we use an optimization approach, when the problem is transformed into a nonconvex optimization problem with a bilinear structure. The latter is solved by the A.S. Strekalovsky’s Global Search Theory (GST) for (d.c.) optimization problems with objective functions represented as the difference of two convex functions.
Keywords: finite noncooperative games, Nash equilibrium, nonconvex optimization problems, local and global search algorithms, computational experiment.
Mots-clés : polymatrix games, hexamatrix game
@article{MGTA_2024_16_4_a3,
     author = {Andrey V. Orlov},
     title = {Triangles of conflicts and hexamatrix games},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {69--94},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2024_16_4_a3/}
}
TY  - JOUR
AU  - Andrey V. Orlov
TI  - Triangles of conflicts and hexamatrix games
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2024
SP  - 69
EP  - 94
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2024_16_4_a3/
LA  - ru
ID  - MGTA_2024_16_4_a3
ER  - 
%0 Journal Article
%A Andrey V. Orlov
%T Triangles of conflicts and hexamatrix games
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2024
%P 69-94
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2024_16_4_a3/
%G ru
%F MGTA_2024_16_4_a3
Andrey V. Orlov. Triangles of conflicts and hexamatrix games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 4, pp. 69-94. http://geodesic.mathdoc.fr/item/MGTA_2024_16_4_a3/