Mots-clés : minimum convolutions
@article{MGTA_2024_16_4_a0,
author = {Victor A. Gorelik and Tatiana V. Zolotova},
title = {About one differential game with payment functions type of {Germeier's} convolution},
journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
pages = {3--20},
year = {2024},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MGTA_2024_16_4_a0/}
}
TY - JOUR AU - Victor A. Gorelik AU - Tatiana V. Zolotova TI - About one differential game with payment functions type of Germeier's convolution JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2024 SP - 3 EP - 20 VL - 16 IS - 4 UR - http://geodesic.mathdoc.fr/item/MGTA_2024_16_4_a0/ LA - ru ID - MGTA_2024_16_4_a0 ER -
%0 Journal Article %A Victor A. Gorelik %A Tatiana V. Zolotova %T About one differential game with payment functions type of Germeier's convolution %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2024 %P 3-20 %V 16 %N 4 %U http://geodesic.mathdoc.fr/item/MGTA_2024_16_4_a0/ %G ru %F MGTA_2024_16_4_a0
Victor A. Gorelik; Tatiana V. Zolotova. About one differential game with payment functions type of Germeier's convolution. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 4, pp. 3-20. http://geodesic.mathdoc.fr/item/MGTA_2024_16_4_a0/
[1] Germeier Yu.B., Vvedenie v teoriyu issledovaniya operatsii, Nauka, M., 1971 | MR
[2] Germeier Yu.B., Vatel I.A., “Igry s ierarkhicheskim vektorom interesov”, Izv. AN SSSR. Ser. Tekhnicheskaya kibernetika, 1974, no. 3, 54–69 | MR | Zbl
[3] Gorelik V.A., Zolotova T.V., “Ierarkhicheskie igry s additivnymi funktsiyami vyigrysha, sochetayuschimi obschestvennye i lichnye interesy”, Matematicheskaya teoriya igr i ee prilozheniya, 13:4 (2021), 3–17 | MR | Zbl
[4] Gorelik V.A., Zolotova T.V., “Klass igrovykh modelei s ravnovesnymi, ustoichivymi i paretooptimalnymi resheniyami”, Matematicheskaya teoriya igr i ee prilozheniya, 14:4 (2022), 24–44 | MR | Zbl
[5] Dixit A.K., Nalebuff B.J., The Art of Strategy: A Game Theorist's Guide to Success in Business and Life, W.W. Norton Company, New York, 2010
[6] Fehr E., Gachter S., “Cooperation and punishment in public goods experiments”, Amer. Econ. Rev., 90:4 (2000), 980–994 | DOI
[7] Groot N., Schutter B.D., Hellendoorn H., “On systematic computation of optimal nonlinear solutions for the reverse Stackelberg game”, IEEE Trans. Syst. Man Cybern.: Syst., 44:10 (2014), 1315–1327 | DOI | MR
[8] Groot N., Schutter B.D., Hellendoorn H., “Optimal affine leader functions in reverse Stackelberg games”, J. Optim. Theory Appl., 168:1 (2016), 348–374 | DOI | MR | Zbl
[9] Hauert C., Holmes M., Doebeli M., Evolutionary games and population dynamics: maintenance of cooperation in public goods games, 273:1600 (2006), 2565–2571
[10] Kukushkin N.S., “Strong Nash equilibrium in games with common and complementary local utilities”, Journal of Mathematical Economics, 68 (2017), 1–12 | DOI | MR | Zbl
[11] Mu Y., “Inverse Stackelberg Public Goods Game with multiple hierarchies under global and local information structures”, J. Optim. Theory Appl. Sci., 163:1 (2014), 332–350 | DOI | MR | Zbl
[12] Olsder G.J., “Phenomena in inverse Stackleberg games, Part I: static problems”, J. Optim. Theory Appl., 143:3 (2009), 589–600 | DOI | MR | Zbl
[13] Pang J.S., Fukushima M., “Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games”, Comput. Manag. Sci., 2:1 (2005), 21–56 | DOI | MR | Zbl
[14] Sefton M., Shupp R., Walker J.M., “The effect of rewards and sanctions in provision of Public Good”, Econ. Inquiry, 45:4 (2007), 671–690 | DOI
[15] Shen H., Basar T., “Incentive-based pricing for network games with complete and incomplete information”, Advances in Dynamic Game Theory, 2007, no. 9, 431–458 | DOI | MR | Zbl
[16] Stackelberg H. Von, Market Structure and Equilibrium, Springer, Berlin, 2011 | Zbl
[17] Staňková K., Olsder G.J., Bliemer M.C.J., “Bi-level optimal toll design problem solved by the inverse Stackelberg games approach”, WIT Transactions on The Built Environment, 2006, no. 89
[18] Ye J., Zhu D., “New necessary optimality conditions for bilevel programs by combining the MPEC and value function approaches”, SIAM J. Optim., 20:4 (2010), 1885–1905 | DOI | MR | Zbl