About one differential game with payment functions type of Germeier's convolution
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 4, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers a differential game model with functionals that are a convolution of the minimum type of two criteria, one of which describes the competition of players in some general (external) sphere of activity, and the other describes the personal achievements of each player (in the internal sphere). The player control is the distribution of resources between the external and internal spheres. It is shown that under some natural assumptions of monotonicity of criteria in such games, Nash and Stackelberg equilibria exist and coincide, possessing the properties of stability and Pareto-optimality. This work is a development of the results for the static model published by the authors in this journal in 2022.
Keywords: differential game, Stackelberg equilibrium, Nash equilibrium, external sphere, internal sphere.
Mots-clés : minimum convolutions
@article{MGTA_2024_16_4_a0,
     author = {Victor A. Gorelik and Tatiana V. Zolotova},
     title = {About one differential game with payment functions type of {Germeier's} convolution},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2024_16_4_a0/}
}
TY  - JOUR
AU  - Victor A. Gorelik
AU  - Tatiana V. Zolotova
TI  - About one differential game with payment functions type of Germeier's convolution
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2024
SP  - 3
EP  - 20
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2024_16_4_a0/
LA  - ru
ID  - MGTA_2024_16_4_a0
ER  - 
%0 Journal Article
%A Victor A. Gorelik
%A Tatiana V. Zolotova
%T About one differential game with payment functions type of Germeier's convolution
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2024
%P 3-20
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2024_16_4_a0/
%G ru
%F MGTA_2024_16_4_a0
Victor A. Gorelik; Tatiana V. Zolotova. About one differential game with payment functions type of Germeier's convolution. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 4, pp. 3-20. http://geodesic.mathdoc.fr/item/MGTA_2024_16_4_a0/

[1] Germeier Yu.B., Vvedenie v teoriyu issledovaniya operatsii, Nauka, M., 1971 | MR

[2] Germeier Yu.B., Vatel I.A., “Igry s ierarkhicheskim vektorom interesov”, Izv. AN SSSR. Ser. Tekhnicheskaya kibernetika, 1974, no. 3, 54–69 | MR | Zbl

[3] Gorelik V.A., Zolotova T.V., “Ierarkhicheskie igry s additivnymi funktsiyami vyigrysha, sochetayuschimi obschestvennye i lichnye interesy”, Matematicheskaya teoriya igr i ee prilozheniya, 13:4 (2021), 3–17 | MR | Zbl

[4] Gorelik V.A., Zolotova T.V., “Klass igrovykh modelei s ravnovesnymi, ustoichivymi i paretooptimalnymi resheniyami”, Matematicheskaya teoriya igr i ee prilozheniya, 14:4 (2022), 24–44 | MR | Zbl

[5] Dixit A.K., Nalebuff B.J., The Art of Strategy: A Game Theorist's Guide to Success in Business and Life, W.W. Norton Company, New York, 2010

[6] Fehr E., Gachter S., “Cooperation and punishment in public goods experiments”, Amer. Econ. Rev., 90:4 (2000), 980–994 | DOI

[7] Groot N., Schutter B.D., Hellendoorn H., “On systematic computation of optimal nonlinear solutions for the reverse Stackelberg game”, IEEE Trans. Syst. Man Cybern.: Syst., 44:10 (2014), 1315–1327 | DOI | MR

[8] Groot N., Schutter B.D., Hellendoorn H., “Optimal affine leader functions in reverse Stackelberg games”, J. Optim. Theory Appl., 168:1 (2016), 348–374 | DOI | MR | Zbl

[9] Hauert C., Holmes M., Doebeli M., Evolutionary games and population dynamics: maintenance of cooperation in public goods games, 273:1600 (2006), 2565–2571

[10] Kukushkin N.S., “Strong Nash equilibrium in games with common and complementary local utilities”, Journal of Mathematical Economics, 68 (2017), 1–12 | DOI | MR | Zbl

[11] Mu Y., “Inverse Stackelberg Public Goods Game with multiple hierarchies under global and local information structures”, J. Optim. Theory Appl. Sci., 163:1 (2014), 332–350 | DOI | MR | Zbl

[12] Olsder G.J., “Phenomena in inverse Stackleberg games, Part I: static problems”, J. Optim. Theory Appl., 143:3 (2009), 589–600 | DOI | MR | Zbl

[13] Pang J.S., Fukushima M., “Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games”, Comput. Manag. Sci., 2:1 (2005), 21–56 | DOI | MR | Zbl

[14] Sefton M., Shupp R., Walker J.M., “The effect of rewards and sanctions in provision of Public Good”, Econ. Inquiry, 45:4 (2007), 671–690 | DOI

[15] Shen H., Basar T., “Incentive-based pricing for network games with complete and incomplete information”, Advances in Dynamic Game Theory, 2007, no. 9, 431–458 | DOI | MR | Zbl

[16] Stackelberg H. Von, Market Structure and Equilibrium, Springer, Berlin, 2011 | Zbl

[17] Staňková K., Olsder G.J., Bliemer M.C.J., “Bi-level optimal toll design problem solved by the inverse Stackelberg games approach”, WIT Transactions on The Built Environment, 2006, no. 89

[18] Ye J., Zhu D., “New necessary optimality conditions for bilevel programs by combining the MPEC and value function approaches”, SIAM J. Optim., 20:4 (2010), 1885–1905 | DOI | MR | Zbl