Minimax differential game with a fixed end moment
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 3, pp. 77-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

The minimax game problem of the convergence of a conflict controlled system in a finite-dimensional Euclidean space at a fixed time moment is studied. The issues related to the construction of solutions to the problem are discussed – calculation and approximate calculation of resolvability sets and resolving positional strategies of the first player. The paper develops the method of unification by N.N. Krasovsky. The positional strategy of the first player is studied. This strategy is based on the extreme aiming of the trajectory of a conflict-controlled system at the finite systems of sets in phase space approximating the set of solvability of the convergence problem. The main result of the work is justification of the effectiveness of the extreme aiming strategy for an approximate solution of the problem. Unification constructions were used to substantiate the effectiveness of the strategy complementing the method of unification by N.N. Krasovsky.
Keywords: control, conflict control system, differenital inclusion, game problem of approaching, target set, resolving set, minimax u-stable bridge, minimax u-stable trajectory.
@article{MGTA_2024_16_3_a4,
     author = {Vladimir N. Ushakov and Alexandr M. Tarasyev and Andrey V. Ushakov},
     title = {Minimax differential game with a fixed end moment},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {77--112},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2024_16_3_a4/}
}
TY  - JOUR
AU  - Vladimir N. Ushakov
AU  - Alexandr M. Tarasyev
AU  - Andrey V. Ushakov
TI  - Minimax differential game with a fixed end moment
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2024
SP  - 77
EP  - 112
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2024_16_3_a4/
LA  - ru
ID  - MGTA_2024_16_3_a4
ER  - 
%0 Journal Article
%A Vladimir N. Ushakov
%A Alexandr M. Tarasyev
%A Andrey V. Ushakov
%T Minimax differential game with a fixed end moment
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2024
%P 77-112
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2024_16_3_a4/
%G ru
%F MGTA_2024_16_3_a4
Vladimir N. Ushakov; Alexandr M. Tarasyev; Andrey V. Ushakov. Minimax differential game with a fixed end moment. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 3, pp. 77-112. http://geodesic.mathdoc.fr/item/MGTA_2024_16_3_a4/

[1] Azamov A., “Poluustoichivost i dvoistvennost v teorii alternirovannogo integrala Pontryagina”, Dokl. AN SSSR, 299:2 (1988), 265–268 | Zbl

[2] Gomoyunov M.I., Lukoyanov N.Yu., “K voprosu chislennogo resheniya differentsialnykh igr dlya lineinykh sistem neitralnogo tipa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 23, no. 1, 2017, 75–87

[3] Grigoreva S.V., Pakhotinskikh V.Yu., Uspenskii A.A., Ushakov V.N., “Konstruirovanie reshenii v nekotorykh differentsialnykh igrakh s fazovymi ogranicheniyami”, Matem. sb., 196:4 (2005), 51–78 | DOI | Zbl

[4] Kamneva L.V., Patsko V.S., “Polugruppovoe svoistvo operatora programmnogo pogloscheniya v igrakh s prostymi dvizheniyami na ploskosti”, Dif. uravneniya, 49:11 (2013), 1399–1409 | MR | Zbl

[5] Kamneva L.V., Patsko V.S., “Postroenie mnozhestva razreshimosti v differentsialnykh igrakh s prostymi dvizheniyami i nevypuklym terminalnym mnozhestvom”, Tr. In-ta matematiki i mekhaniki UrO RAN, 23, no. 1, 2017, 143–157

[6] Krasovskii N.N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970

[7] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR

[8] Krasovskii N.N., Subbotin A.I., Ushakov V.N., “Minimaksnaya differentsialnaya igra”, Dokl. AN SSSR, 206:2 (1972), 277–280 | Zbl

[9] Krasovskii N.N., “K zadache unifikatsii differentsialnykh igr”, Dokl. AN SSSR, 226:6 (1976), 1260–1263 | MR | Zbl

[10] Krasovskii N.N., “Unifikatsiya differentsialnykh igr”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24, 1977, 32–45

[11] Kurzhanskii A.B., Izbrannye trudy, Izd-vo Mosk. un-ta, M., 2009

[12] Nikolskii M.S., “Ob alternirovannom integrale L.S. Pontryagina”, Mat. sb., 116:1 (1981), 136–144 | MR | Zbl

[13] Nikolskii M.S., “O nizhnem alternirovannom integrale L.S. Pontryagina”, Mat. sb., 128:1 (1985), 35–49 | MR | Zbl

[14] Osipov Yu.S., “Minimaksnoe pogloschenie v differentsialnykh igrakh”, Dokl. AN SSSR, 203:1 (1972), 32–35 | Zbl

[15] Polovinkin E.S., Ivanov G.E. , Balashov M.V., Konstantinov R.V., Khorev A.V., “Ob odnom algoritme chislennogo resheniya lineinykh differentsialnykh igr”, Matem. sb., 192:10 (2001), 95–122 | DOI | Zbl

[16] Pontryagin L.S., “O lineinykh differentsialnykh igrakh. 1”, Dokl. AN SSSR, 174:6 (1967), 1278–1280 | Zbl

[17] Pontryagin L.S., “O lineinykh differentsialnykh igrakh. 2”, Dokl. AN SSSR, 175:1 (1967), 764–766 | Zbl

[18] Pshenichnyi B.N., “Struktura differentsialnykh igr”, Dokl. AN SSSR, 184:2 (1969), 285–287 | Zbl

[19] Subbotin A.I., Minimaksnye neravenstva i uravneniya Gamiltona-Yakobi, Nauka, M., 1991

[20] Subbotin A.I., Chentsov A.G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981 | MR

[21] Tarasev A.M., Ushakov V.N., Khripunov A.P., “Ob odnom vychislitelnom algoritme resheniya igrovykh zadach upravleniya”, Priklad. matematika i mekhanika, 51:2 (1987), 216–222 | MR | Zbl

[22] Tarasev A.M., Konstruktsii i metody negladkogo analiza v zadachakh optimalnogo garantirovannogo upravleniya, avtoreferat dis. \ldots dokt. fiz.-matem. nauk: 01.01.02, In-t matematiki i mekhaniki, Ekaterinburg, 1996

[23] Chernousko F.L., Melikyan A.A., Igrovye zadachi upravleniya i poiska, Nauka, M., 1978 | MR

[24] Cardaliaguet P., Quincampoix M., Saint-Pierre P., “Pursuit differential games with state constraints”, SIAM J. Control Optim., 39:5 (2000), 1615–1632 | DOI | MR

[25] Fleming W.H., “The convergence problem for differential games”, J. Math. Anal. and Appl., 3 (1961), 102–116 | DOI | MR | Zbl

[26] Grinikh A.L., Petrosyan L.A., “An effective punishment for an n-person prisoner's dilemma on a network”, Tr. IMM UrO RAN, 27, no. 3, 2021, 256–262 | MR