Models of optimal organization of the tax inspection
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 3, pp. 14-26

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of optimal organization of the state inspection with an honest head and rational inspectors is considered. The audit schemes are being investigated, in which the honest behavior of taxpayers and auditors turns out to be resistant to deviations from their coalitions. In addition to hierarchical structures, a three-stage scheme with cross-checking is considered. It has been proven that cross-checking is never optimal. The minimum audit costs for 2- and 3-level structures have been determined. The best option is specified depending on the model parameters.
Mots-clés : corruption
Keywords: hierarchical structures, game-theoretic models.
@article{MGTA_2024_16_3_a1,
     author = {Alexander A. Vasin and Nikita I. Tsyganov},
     title = {Models of optimal organization of the tax inspection},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {14--26},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2024_16_3_a1/}
}
TY  - JOUR
AU  - Alexander A. Vasin
AU  - Nikita I. Tsyganov
TI  - Models of optimal organization of the tax inspection
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2024
SP  - 14
EP  - 26
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2024_16_3_a1/
LA  - ru
ID  - MGTA_2024_16_3_a1
ER  - 
%0 Journal Article
%A Alexander A. Vasin
%A Nikita I. Tsyganov
%T Models of optimal organization of the tax inspection
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2024
%P 14-26
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2024_16_3_a1/
%G ru
%F MGTA_2024_16_3_a1
Alexander A. Vasin; Nikita I. Tsyganov. Models of optimal organization of the tax inspection. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 3, pp. 14-26. http://geodesic.mathdoc.fr/item/MGTA_2024_16_3_a1/