Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2024_16_3_a0, author = {Abdulla A. Azamov and Azamat G. Holboyev}, title = {On the number of pursuers that guarantees the capture of the evader in the game on the graph of icosahedral edges}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {3--13}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2024_16_3_a0/} }
TY - JOUR AU - Abdulla A. Azamov AU - Azamat G. Holboyev TI - On the number of pursuers that guarantees the capture of the evader in the game on the graph of icosahedral edges JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2024 SP - 3 EP - 13 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2024_16_3_a0/ LA - ru ID - MGTA_2024_16_3_a0 ER -
%0 Journal Article %A Abdulla A. Azamov %A Azamat G. Holboyev %T On the number of pursuers that guarantees the capture of the evader in the game on the graph of icosahedral edges %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2024 %P 3-13 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2024_16_3_a0/ %G ru %F MGTA_2024_16_3_a0
Abdulla A. Azamov; Azamat G. Holboyev. On the number of pursuers that guarantees the capture of the evader in the game on the graph of icosahedral edges. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 3, pp. 3-13. http://geodesic.mathdoc.fr/item/MGTA_2024_16_3_a0/
[1] Azamov A.A., Osnovaniya teorii diskretnykh igr, «Niso Poligraf», Tashkent, 2011
[2] Azamov A.A., Ibaidullaev T.T., “Differentsialnaya igra sblizheniya-ukloneniya s medlennymi presledovatelyami na grafe reber simpleksa. I”, MTIiP, 12:4 (2020), 7–23 | Zbl
[3] Azamov A.A., Kuchkarov, A.Sh., Kholboev A.G., “Igra presledovaniya-ubeganiya na rebernom ostove pravilnykh mnogogrannikov III”, MTIiP, 11:4 (2019), 5–23 | Zbl
[4] Azamov A.A., Kuchkarov, A.Sh., Kholboev A.G., “Igra presledovaniya-ubeganiya na rebernom ostove pravilnykh mnogogrannikov pri nalichii «medlennykh», presledovatelei”, Uzbek Mathematical Journal, 1 (2017), 140–145
[5] Petrosyan L.A., Zenkevich N.A., Shevkoplyas E.V., Teoriya igr, BKhV-Peterburg, SPb, 2012
[6] Pontryagin L.S., Izbrannye nauchnye trudy, v. 2, Nauka, M., 1988
[7] Aigner M., Fromme M., “A game of cops and robbers”, Discrete Appl. Math., 8 (1984), 1–11 | DOI | MR | Zbl
[8] Andreae T., “Note on a pursuit game played on graphs”, Discrete Appl. Math., 9 (1984), 111–115 | DOI | MR | Zbl
[9] Azamov A.A., Kuchkarov A.Sh., Holboyev A.G., “The pursuit-evasion game on the 1-skeleton graph of regular polyhedron. I”, Automation and Remote Control, 78:4 (2017), 754–761 | DOI | MR
[10] Azamov A.A., Kuchkarov A.Sh., Holboyev A.G., “The pursuit-evasion game on the 1-skeleton graph of regular polyhedron. II”, Automation and Remote Control, 80:1 (2019), 164–170 | DOI | MR | Zbl
[11] Bollodas B., Kun G., Leader I., Cops and robbers in a random graph, Preprint, 2011 | MR
[12] Bonato A., Nowakowski R.J., The game of cops and robbers on graphs, Student Mathematical Library, 61, American Mathematical Society, Providence, RI, 2011 | DOI | MR | Zbl
[13] Coxeter H.S.M., Introduction to Geometry, John Wiley and Sons, Inc., NY, 1961 | MR | Zbl
[14] Ibragimov G., Holboyev A., Ibaydullaev T., Pansera B.A., “Pursuit differential game on the 1-skeleton graph of the icosahedron”, Mathematics, 10 (2022), 1435 | DOI | MR
[15] Isaacs R., Differential games, Dover Publications, 1999 | Zbl
[16] Malkevitch J., Shaping space: a polyhedral approach, eds. Senechal M., Flenk G., Birkhauser, Boston, 1988, 80–92 | MR
[17] Nowakowski R.J., “Unsolved problems in combinatorial games”, Games of no chance 5, Math. Sci. Res. Inst. Publ., Cambridge Univ. Press, Cambridge, 2019, 125–168 | MR | Zbl