On the number of pursuers that guarantees the capture of the evader in the game on the graph of icosahedral edges
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 3, pp. 3-13

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the study of the change in the optimal number of pursuers when removing one edge in a differential game on graphs. It is shown that when one edge of the icosahedron is removed, two pursuers are sufficient to capture the evader, whereas for the icosahedron itself, this number is 3.
Keywords: pursuit problem, evasion problem, pursuers strategy, geometric graph
Mots-clés : icosahedron.
@article{MGTA_2024_16_3_a0,
     author = {Abdulla A. Azamov and Azamat G. Holboyev},
     title = {On the number of pursuers that guarantees the capture of the evader in the game on the graph of icosahedral edges},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2024_16_3_a0/}
}
TY  - JOUR
AU  - Abdulla A. Azamov
AU  - Azamat G. Holboyev
TI  - On the number of pursuers that guarantees the capture of the evader in the game on the graph of icosahedral edges
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2024
SP  - 3
EP  - 13
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2024_16_3_a0/
LA  - ru
ID  - MGTA_2024_16_3_a0
ER  - 
%0 Journal Article
%A Abdulla A. Azamov
%A Azamat G. Holboyev
%T On the number of pursuers that guarantees the capture of the evader in the game on the graph of icosahedral edges
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2024
%P 3-13
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2024_16_3_a0/
%G ru
%F MGTA_2024_16_3_a0
Abdulla A. Azamov; Azamat G. Holboyev. On the number of pursuers that guarantees the capture of the evader in the game on the graph of icosahedral edges. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 3, pp. 3-13. http://geodesic.mathdoc.fr/item/MGTA_2024_16_3_a0/