On the number of pursuers that guarantees the capture of the evader in the game on the graph of icosahedral edges
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 3, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the study of the change in the optimal number of pursuers when removing one edge in a differential game on graphs. It is shown that when one edge of the icosahedron is removed, two pursuers are sufficient to capture the evader, whereas for the icosahedron itself, this number is 3.
Keywords: pursuit problem, evasion problem, pursuers strategy, geometric graph
Mots-clés : icosahedron.
@article{MGTA_2024_16_3_a0,
     author = {Abdulla A. Azamov and Azamat G. Holboyev},
     title = {On the number of pursuers that guarantees the capture of the evader in the game on the graph of icosahedral edges},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2024_16_3_a0/}
}
TY  - JOUR
AU  - Abdulla A. Azamov
AU  - Azamat G. Holboyev
TI  - On the number of pursuers that guarantees the capture of the evader in the game on the graph of icosahedral edges
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2024
SP  - 3
EP  - 13
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2024_16_3_a0/
LA  - ru
ID  - MGTA_2024_16_3_a0
ER  - 
%0 Journal Article
%A Abdulla A. Azamov
%A Azamat G. Holboyev
%T On the number of pursuers that guarantees the capture of the evader in the game on the graph of icosahedral edges
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2024
%P 3-13
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2024_16_3_a0/
%G ru
%F MGTA_2024_16_3_a0
Abdulla A. Azamov; Azamat G. Holboyev. On the number of pursuers that guarantees the capture of the evader in the game on the graph of icosahedral edges. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 3, pp. 3-13. http://geodesic.mathdoc.fr/item/MGTA_2024_16_3_a0/

[1] Azamov A.A., Osnovaniya teorii diskretnykh igr, «Niso Poligraf», Tashkent, 2011

[2] Azamov A.A., Ibaidullaev T.T., “Differentsialnaya igra sblizheniya-ukloneniya s medlennymi presledovatelyami na grafe reber simpleksa. I”, MTIiP, 12:4 (2020), 7–23 | Zbl

[3] Azamov A.A., Kuchkarov, A.Sh., Kholboev A.G., “Igra presledovaniya-ubeganiya na rebernom ostove pravilnykh mnogogrannikov III”, MTIiP, 11:4 (2019), 5–23 | Zbl

[4] Azamov A.A., Kuchkarov, A.Sh., Kholboev A.G., “Igra presledovaniya-ubeganiya na rebernom ostove pravilnykh mnogogrannikov pri nalichii «medlennykh», presledovatelei”, Uzbek Mathematical Journal, 1 (2017), 140–145

[5] Petrosyan L.A., Zenkevich N.A., Shevkoplyas E.V., Teoriya igr, BKhV-Peterburg, SPb, 2012

[6] Pontryagin L.S., Izbrannye nauchnye trudy, v. 2, Nauka, M., 1988

[7] Aigner M., Fromme M., “A game of cops and robbers”, Discrete Appl. Math., 8 (1984), 1–11 | DOI | MR | Zbl

[8] Andreae T., “Note on a pursuit game played on graphs”, Discrete Appl. Math., 9 (1984), 111–115 | DOI | MR | Zbl

[9] Azamov A.A., Kuchkarov A.Sh., Holboyev A.G., “The pursuit-evasion game on the 1-skeleton graph of regular polyhedron. I”, Automation and Remote Control, 78:4 (2017), 754–761 | DOI | MR

[10] Azamov A.A., Kuchkarov A.Sh., Holboyev A.G., “The pursuit-evasion game on the 1-skeleton graph of regular polyhedron. II”, Automation and Remote Control, 80:1 (2019), 164–170 | DOI | MR | Zbl

[11] Bollodas B., Kun G., Leader I., Cops and robbers in a random graph, Preprint, 2011 | MR

[12] Bonato A., Nowakowski R.J., The game of cops and robbers on graphs, Student Mathematical Library, 61, American Mathematical Society, Providence, RI, 2011 | DOI | MR | Zbl

[13] Coxeter H.S.M., Introduction to Geometry, John Wiley and Sons, Inc., NY, 1961 | MR | Zbl

[14] Ibragimov G., Holboyev A., Ibaydullaev T., Pansera B.A., “Pursuit differential game on the 1-skeleton graph of the icosahedron”, Mathematics, 10 (2022), 1435 | DOI | MR

[15] Isaacs R., Differential games, Dover Publications, 1999 | Zbl

[16] Malkevitch J., Shaping space: a polyhedral approach, eds. Senechal M., Flenk G., Birkhauser, Boston, 1988, 80–92 | MR

[17] Nowakowski R.J., “Unsolved problems in combinatorial games”, Games of no chance 5, Math. Sci. Res. Inst. Publ., Cambridge Univ. Press, Cambridge, 2019, 125–168 | MR | Zbl