Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2024_16_2_a5, author = {Jiangjing Zhou and Ovanes Petrosian}, title = {Bayesian learning in fish wars: dynamic estimation of unknown states and private information}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {92--112}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a5/} }
TY - JOUR AU - Jiangjing Zhou AU - Ovanes Petrosian TI - Bayesian learning in fish wars: dynamic estimation of unknown states and private information JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2024 SP - 92 EP - 112 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a5/ LA - ru ID - MGTA_2024_16_2_a5 ER -
%0 Journal Article %A Jiangjing Zhou %A Ovanes Petrosian %T Bayesian learning in fish wars: dynamic estimation of unknown states and private information %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2024 %P 92-112 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a5/ %G ru %F MGTA_2024_16_2_a5
Jiangjing Zhou; Ovanes Petrosian. Bayesian learning in fish wars: dynamic estimation of unknown states and private information. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 2, pp. 92-112. http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a5/
[1] Adler S., Subramanian V., “Bayesian learning of optimal policies in Markov decision processes with countably infinite state-space”, Advances in Neural Information Processing Systems, 2024 | Zbl
[2] Breton M., Keoula M. Y., “A great fish war model with asymmetric players”, Ecological economics, 97 (2014), 209–223 | DOI
[3] Cave J., “Long-term competition in a dynamic game: the cold fish war”, The RAND Journal of Economics, 1987, 596–610 | DOI | MR
[4] Chakrabarty A., Benosman M., “Safe learning-based observers for unknown nonlinear systems using Bayesian optimization”, Automatica, 133 (2021), 109860 | DOI | MR | Zbl
[5] Fischer R. D., Mirman L. J., “Strategic dynamic interaction: fish wars”, Journal of Economic Dynamics and Control, 16:2 (1992), 267–287 | DOI | Zbl
[6] Fischer R. D., Mirman L. J., “The compleat fish wars: Biological and dynamic interactions”, Journal of Environmental Economics and Management, 30:1 (1996), 34–42 | DOI | Zbl
[7] Grewal M. S., Andrews A. P., Kalman filtering: Theory and Practice with MATLAB, John Wiley Sons, 2014 | MR
[8] Harsanyi J., “Games with Incomplete Information Played by Bayesian Players, I–III. Part III. The Basic Probability Distribution of the Game”, Management Science, 14:7 (1968), 486–502 | DOI | MR | Zbl
[9] Huang L., Zhu Q., “Analysis and computation of adaptive defense strategies against advanced persistent threats for cyber-physical systems”, Decision and Game Theory for Security, 9th International Conference, GameSec 2018, Proceedings 9 (Seattle, WA, USA, October 29–31, 2018), 2018, 205–226 | DOI | Zbl
[10] Haurie A., Krawczyk J.B., Zaccour G., Games and dynamic games, World Scientific Publishing Company, Singapore, 2012 | MR | Zbl
[11] Kumar P., Schuppen J. V., “On Nash equilibrium solutions in stocha-stic dynamic games”, IEEE Transactions on Automatic Control, 25:6 (1980), 1146–1149 | DOI | MR | Zbl
[12] Levhari D., Mirman L. J., “The great fish war: an example using a dynamic Cournot–Nash solution”, Fisheries Economics, v. II, 2020, 49–61 | DOI
[13] Masoudi S., Santugini M., Zaccour G., “A dynamic game of emissions pollution with uncertainty and learning”, Environmental and Resource Economics, 64 (2016), 349–372 | DOI
[14] Mirman L.J., Santugini M., Koulovatianos C., “Optimal growth and uncertainty: Learning”, Journal of Economic Theory, 144:1 (2009), 280–295 | DOI | MR | Zbl
[15] Mirman L. J., Santugini M., “Learning and technological progress in dynamic games”, Dynamic Games and Applications, 4 (2014), 58–72 | DOI | MR | Zbl
[16] Pindyck R. S., “Irreversibilities and the timing of environmental policy”, Resource and energy economics, 22:3 (2000), 233–259 | DOI
[17] Pindyck R. S., “Uncertainty in environmental economics”, Review of environmental economics and policy, 2007
[18] Schofield N., “Instability of simple dynamic games”, The Review of Economic Studies, 45:3 (1978), 575–594 | DOI | MR | Zbl
[19] Ulph A., Maddison D., “Uncertainty, learning and international environmental policy coordination”, Environmental and Resource Economics, 9 (1997), 451–466
[20] Xiao B., Yang W., “A Bayesian learning model for estimating unknown demand parameter in revenue management”, European Journal of Operational Research, 293:1 (2021), 248–262 | DOI | MR | Zbl
[21] Yeung D. W., Petrosyan L. A., “A cooperative stochastic differential game of transboundary industrial pollution”, Automatica, 44:6 (2008), 1532–1544 | DOI | MR | Zbl
[22] Zeeuw A. D., Zemel A., “Regime shifts and uncertainty in pollution control”, Journal of Economic Dynamics and Control, 36:7 (2012), 939–950 | DOI | MR | Zbl