Bayesian learning in fish wars: dynamic estimation of unknown states and private information
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 2, pp. 92-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper investigates a unique variant of the «fish war» game, where participants are required to estimate unknown environmental parameters and the private information of adversaries based on received signals. We develop a dynamic game model where the evolution of the fish population is influenced by an unknown parameter, $\epsilon$, and each player's payoff function incorporates their private information, $\delta$. Utilizing Bayesian learning methods, we demonstrate how participants can update their estimates of these unknown parameters over time. We prove that these estimates converge to true values as time progresses. The paper further presents a Nash Equilibrium with Bayesian learning, providing a solution to this specialized game. Numerical simulations are included to illustrate the convergence of beliefs among players and to compare their control strategies under various scenarios.
Keywords: dynamic Bayesian learning, «fish war» game, private information, unknown parameters.
@article{MGTA_2024_16_2_a5,
     author = {Jiangjing Zhou and Ovanes Petrosian},
     title = {Bayesian learning in fish wars: dynamic estimation of unknown states and private information},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {92--112},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a5/}
}
TY  - JOUR
AU  - Jiangjing Zhou
AU  - Ovanes Petrosian
TI  - Bayesian learning in fish wars: dynamic estimation of unknown states and private information
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2024
SP  - 92
EP  - 112
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a5/
LA  - ru
ID  - MGTA_2024_16_2_a5
ER  - 
%0 Journal Article
%A Jiangjing Zhou
%A Ovanes Petrosian
%T Bayesian learning in fish wars: dynamic estimation of unknown states and private information
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2024
%P 92-112
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a5/
%G ru
%F MGTA_2024_16_2_a5
Jiangjing Zhou; Ovanes Petrosian. Bayesian learning in fish wars: dynamic estimation of unknown states and private information. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 2, pp. 92-112. http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a5/

[1] Adler S., Subramanian V., “Bayesian learning of optimal policies in Markov decision processes with countably infinite state-space”, Advances in Neural Information Processing Systems, 2024 | Zbl

[2] Breton M., Keoula M. Y., “A great fish war model with asymmetric players”, Ecological economics, 97 (2014), 209–223 | DOI

[3] Cave J., “Long-term competition in a dynamic game: the cold fish war”, The RAND Journal of Economics, 1987, 596–610 | DOI | MR

[4] Chakrabarty A., Benosman M., “Safe learning-based observers for unknown nonlinear systems using Bayesian optimization”, Automatica, 133 (2021), 109860 | DOI | MR | Zbl

[5] Fischer R. D., Mirman L. J., “Strategic dynamic interaction: fish wars”, Journal of Economic Dynamics and Control, 16:2 (1992), 267–287 | DOI | Zbl

[6] Fischer R. D., Mirman L. J., “The compleat fish wars: Biological and dynamic interactions”, Journal of Environmental Economics and Management, 30:1 (1996), 34–42 | DOI | Zbl

[7] Grewal M. S., Andrews A. P., Kalman filtering: Theory and Practice with MATLAB, John Wiley Sons, 2014 | MR

[8] Harsanyi J., “Games with Incomplete Information Played by Bayesian Players, I–III. Part III. The Basic Probability Distribution of the Game”, Management Science, 14:7 (1968), 486–502 | DOI | MR | Zbl

[9] Huang L., Zhu Q., “Analysis and computation of adaptive defense strategies against advanced persistent threats for cyber-physical systems”, Decision and Game Theory for Security, 9th International Conference, GameSec 2018, Proceedings 9 (Seattle, WA, USA, October 29–31, 2018), 2018, 205–226 | DOI | Zbl

[10] Haurie A., Krawczyk J.B., Zaccour G., Games and dynamic games, World Scientific Publishing Company, Singapore, 2012 | MR | Zbl

[11] Kumar P., Schuppen J. V., “On Nash equilibrium solutions in stocha-stic dynamic games”, IEEE Transactions on Automatic Control, 25:6 (1980), 1146–1149 | DOI | MR | Zbl

[12] Levhari D., Mirman L. J., “The great fish war: an example using a dynamic Cournot–Nash solution”, Fisheries Economics, v. II, 2020, 49–61 | DOI

[13] Masoudi S., Santugini M., Zaccour G., “A dynamic game of emissions pollution with uncertainty and learning”, Environmental and Resource Economics, 64 (2016), 349–372 | DOI

[14] Mirman L.J., Santugini M., Koulovatianos C., “Optimal growth and uncertainty: Learning”, Journal of Economic Theory, 144:1 (2009), 280–295 | DOI | MR | Zbl

[15] Mirman L. J., Santugini M., “Learning and technological progress in dynamic games”, Dynamic Games and Applications, 4 (2014), 58–72 | DOI | MR | Zbl

[16] Pindyck R. S., “Irreversibilities and the timing of environmental policy”, Resource and energy economics, 22:3 (2000), 233–259 | DOI

[17] Pindyck R. S., “Uncertainty in environmental economics”, Review of environmental economics and policy, 2007

[18] Schofield N., “Instability of simple dynamic games”, The Review of Economic Studies, 45:3 (1978), 575–594 | DOI | MR | Zbl

[19] Ulph A., Maddison D., “Uncertainty, learning and international environmental policy coordination”, Environmental and Resource Economics, 9 (1997), 451–466

[20] Xiao B., Yang W., “A Bayesian learning model for estimating unknown demand parameter in revenue management”, European Journal of Operational Research, 293:1 (2021), 248–262 | DOI | MR | Zbl

[21] Yeung D. W., Petrosyan L. A., “A cooperative stochastic differential game of transboundary industrial pollution”, Automatica, 44:6 (2008), 1532–1544 | DOI | MR | Zbl

[22] Zeeuw A. D., Zemel A., “Regime shifts and uncertainty in pollution control”, Journal of Economic Dynamics and Control, 36:7 (2012), 939–950 | DOI | MR | Zbl