How to maximize the total strength of survivors in the battle and the tournament in the gladiator game model
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 2, pp. 66-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1984, Kaminsky, Luks and Nelson formulated the gladiator game model of two teams. Suppose that a team wants to maximize its expected strength at the end of the battle. We consider an optimization problem: how to distribute the team’s strength among its gladiators. In the above we suppose that the teams distribute their strengths at the begining of the battle. We also consider Nash equilibria when the teams may change gladiators' strengths before every fight. We consider two cases. In both, the first team wants to maximize its strength. The second team wants to maximize its strength too in the first case or wants to minimize the first team's strength in the second case.
Keywords: colonel Blotto games, gladiator games, optimal strategy, Nash equilibrium.
@article{MGTA_2024_16_2_a4,
     author = {Mariya A. Khodyakova},
     title = {How to maximize the total strength of survivors in the battle and the tournament in the gladiator game model},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {66--91},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a4/}
}
TY  - JOUR
AU  - Mariya A. Khodyakova
TI  - How to maximize the total strength of survivors in the battle and the tournament in the gladiator game model
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2024
SP  - 66
EP  - 91
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a4/
LA  - ru
ID  - MGTA_2024_16_2_a4
ER  - 
%0 Journal Article
%A Mariya A. Khodyakova
%T How to maximize the total strength of survivors in the battle and the tournament in the gladiator game model
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2024
%P 66-91
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a4/
%G ru
%F MGTA_2024_16_2_a4
Mariya A. Khodyakova. How to maximize the total strength of survivors in the battle and the tournament in the gladiator game model. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 2, pp. 66-91. http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a4/

[1] Kharlamov V.V., “Ob asimptoticheskikh strategiyakh v stokhasticheskoi igre polkovnika Blotto”, Teoriya veroyatnostei i ee primeneniya, 2022, no. 2, 396–407 | DOI | Zbl

[2] Kharlamov V.V., “Obobschennaya model stokhasticheskoi igry polkovnika Blotto”, Diskretnaya matematika, 2022, no. 3, 136–154 | DOI

[3] Borel E., “La théorie du jeu et les équations intégralesa noyau symétrique”, Comptes rendus de l'Académie des Sciences, 173:1304–1308 (1921), 58

[4] Kaminsky K., Luks E., Nelson P., “Strategy, nontransitive dominance and the exponential distribution”, Australian Journal of Statistics, 26:2 (1984), 111–118 | DOI | MR | Zbl

[5] Rinott Y., Scarsini M., Yu Y., “A Colonel Blotto gladiator game”, Mathematics of Operations Research, 37:4 (2012), 574–590 | DOI | MR | Zbl