Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2024_16_2_a4, author = {Mariya A. Khodyakova}, title = {How to maximize the total strength of survivors in the battle and the tournament in the gladiator game model}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {66--91}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a4/} }
TY - JOUR AU - Mariya A. Khodyakova TI - How to maximize the total strength of survivors in the battle and the tournament in the gladiator game model JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2024 SP - 66 EP - 91 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a4/ LA - ru ID - MGTA_2024_16_2_a4 ER -
%0 Journal Article %A Mariya A. Khodyakova %T How to maximize the total strength of survivors in the battle and the tournament in the gladiator game model %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2024 %P 66-91 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a4/ %G ru %F MGTA_2024_16_2_a4
Mariya A. Khodyakova. How to maximize the total strength of survivors in the battle and the tournament in the gladiator game model. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 2, pp. 66-91. http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a4/
[1] Kharlamov V.V., “Ob asimptoticheskikh strategiyakh v stokhasticheskoi igre polkovnika Blotto”, Teoriya veroyatnostei i ee primeneniya, 2022, no. 2, 396–407 | DOI | Zbl
[2] Kharlamov V.V., “Obobschennaya model stokhasticheskoi igry polkovnika Blotto”, Diskretnaya matematika, 2022, no. 3, 136–154 | DOI
[3] Borel E., “La théorie du jeu et les équations intégralesa noyau symétrique”, Comptes rendus de l'Académie des Sciences, 173:1304–1308 (1921), 58
[4] Kaminsky K., Luks E., Nelson P., “Strategy, nontransitive dominance and the exponential distribution”, Australian Journal of Statistics, 26:2 (1984), 111–118 | DOI | MR | Zbl
[5] Rinott Y., Scarsini M., Yu Y., “A Colonel Blotto gladiator game”, Mathematics of Operations Research, 37:4 (2012), 574–590 | DOI | MR | Zbl