Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2024_16_2_a3, author = {Alena M. Pisareva and Elena M. Parilina}, title = {Approximate equilibrium in a finitely repeated {``Prisoner's} dilemma''}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {45--65}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a3/} }
TY - JOUR AU - Alena M. Pisareva AU - Elena M. Parilina TI - Approximate equilibrium in a finitely repeated ``Prisoner's dilemma'' JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2024 SP - 45 EP - 65 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a3/ LA - ru ID - MGTA_2024_16_2_a3 ER -
Alena M. Pisareva; Elena M. Parilina. Approximate equilibrium in a finitely repeated ``Prisoner's dilemma''. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 2, pp. 45-65. http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a3/
[1] Petrosyan L.A., Zenkevich N.A., Semina E.A., Teoriya igr, Vysshaya shkola, M., 1998
[2] Pecherskii S.L., Belyaeva A.A., Teoriya igr dlya ekonomistov. Vvodnyi kurs, Izdatelstvo Evropeiskogo universiteta v Sankt-Peterburge, SPb., 2001
[3] Pisareva A.M., “Postroenie strategii nakazaniya v povtoryayuschikhsya igrakh «dilemma zaklyuchennogo»”, Protsessy upravleniya i ustoichivost, 2023, no. 1, 472–476
[4] Axelrod R., “On six advances in cooperation theory”, Analyse Kritik, 22:1 (2000), 130–151 | DOI
[5] Benoit J., Krishna V., “Finitely Repeated Games”, Econometrica, 53:4 (1985), 905–922 | DOI | MR | Zbl
[6] Everett H., “Recursive games”, Contributions to the Theory of Games, 3:39 (1957), 47–78 | MR
[7] Friedman J., “A Non-cooperative Equilibrium for Supergames”, The Review of Economic Studies, 38:1 (1971), 1–12 | DOI | Zbl
[8] Fudenberg D., Maskin E., “The Folk Theorem in Repeated Games with Discounting or with Incomplete Information”, Econometrica, 54:3 (1986), 533–554 | DOI | MR | Zbl
[9] Grauer L.V., Petrosyan L.A., “Multistage games”, Journal of Applied Mathematics and Mechanics, 68:4 (2004), 597–605 | DOI | MR | Zbl
[10] Grinikh A.L., Petrosyan L.A., “An effective punishment for an n-person prisoner's dilemma on a network”, Trudy instituta matematiki i mekhaniki UrO RAN, 27, no. 3, 2021, 256–262 | MR
[11] Kuzyutin D., Smirnova N., “Subgame consistent cooperative behavior in an extensive form game with chance moves”, Mathematics, 8:7 (2020), 1061 | DOI
[12] Mailath G., Samuelson L., Repeated games and reputations: long-run relationships, Oxford University Press, 2006
[13] Maschler M., Solan E., Zamir S., Game Theory, Cambridge University Press, 2013 | MR | Zbl
[14] Parilina E., Zaccour G., “Approximated cooperative equilibria for games played over event trees”, Operations Research Letters, 43:5 (2015), 507–513 | DOI | MR | Zbl
[15] Parilina E., Zaccour G., “Payment schemes for sustaining cooperation in dynamic games”, Journal of Economic Dynamics and Control, 139 (2022), 104440 | DOI | MR | Zbl
[16] Radner R., “Collusive behavior in noncooperative epsilon-equilibria of oligopolies with long but finite lives”, Journal of Economic Theory, 22:2 (1980), 136–154 | DOI | MR | Zbl
[17] Radner R., “Can bounded rationality resolve the prisoner's dilemma”, Essays in honor of Gerard Debreu, 1986, 387–399 | MR | Zbl
[18] Vasin A., “The Folk theorem for dominance solutions”, International Journal of Game Theory, 28:1 (1999), 15–24 | DOI | MR | Zbl
[19] Vasin A., “The folk theorems in the framework of evolution and cooperation”, Annals of the International Society of Dynamic Games, 8 (2006), 197–207 | DOI | MR | Zbl