Approximate equilibrium in a finitely repeated ``Prisoner's dilemma''
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 2, pp. 45-65

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies finitely repeated Prisoner's Dilemma. To maintain cooperation in the game, a new profile of behavioral strategies is proposed, where the deviation of a player is not punished until the end of the game, but for a given number of stages depending on the stage of the game. The existence of an approximate equilibrium in these strategies is proven, and the maximum value of benefit of a player deviating from the approximate equilibrium is found.
Keywords: repeated games, prisoner's dilemma, approximate equilibrium, trigger strategy.
@article{MGTA_2024_16_2_a3,
     author = {Alena M. Pisareva and Elena M. Parilina},
     title = {Approximate equilibrium in a finitely repeated {``Prisoner's} dilemma''},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {45--65},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a3/}
}
TY  - JOUR
AU  - Alena M. Pisareva
AU  - Elena M. Parilina
TI  - Approximate equilibrium in a finitely repeated ``Prisoner's dilemma''
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2024
SP  - 45
EP  - 65
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a3/
LA  - ru
ID  - MGTA_2024_16_2_a3
ER  - 
%0 Journal Article
%A Alena M. Pisareva
%A Elena M. Parilina
%T Approximate equilibrium in a finitely repeated ``Prisoner's dilemma''
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2024
%P 45-65
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a3/
%G ru
%F MGTA_2024_16_2_a3
Alena M. Pisareva; Elena M. Parilina. Approximate equilibrium in a finitely repeated ``Prisoner's dilemma''. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 2, pp. 45-65. http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a3/