On integer imputations of the core of totally balanced cooperative games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 2, pp. 29-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider totally balanced cooperative games in which the characteristic function takes integer values. It has been proven that any three- and four-person game has an integer imputation from the core. A similar result, with the exception of one degenerated case, was obtained for five-person game. The method of construction of mentioned integer imputation is indicated. An example of a five-person game is given in which the core consists of a single non-integer imputation.
Keywords: totally balanced cooperative game, core of a cooperative game, balanced collection, characteristic function with integer values
Mots-clés : integer imputation.
@article{MGTA_2024_16_2_a2,
     author = {Vladimir V. Morozov and Saryal I. Romanov},
     title = {On integer imputations of the core of totally balanced cooperative games},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {29--44},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a2/}
}
TY  - JOUR
AU  - Vladimir V. Morozov
AU  - Saryal I. Romanov
TI  - On integer imputations of the core of totally balanced cooperative games
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2024
SP  - 29
EP  - 44
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a2/
LA  - ru
ID  - MGTA_2024_16_2_a2
ER  - 
%0 Journal Article
%A Vladimir V. Morozov
%A Saryal I. Romanov
%T On integer imputations of the core of totally balanced cooperative games
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2024
%P 29-44
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a2/
%G ru
%F MGTA_2024_16_2_a2
Vladimir V. Morozov; Saryal I. Romanov. On integer imputations of the core of totally balanced cooperative games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 2, pp. 29-44. http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a2/

[1] Bondareva O.N., “Nekotorye primeneniya metodov lineinogo programmirovaniya k teorii kooperativnykh igr”, Problemy kibernetiki, 1963, no. 10, 119–140

[2] Morozov V.V., A'zamkhuzhaev M.Kh., “O poiske delezhei diskretnoi kooperativnoi igry”, Primenenie vychislitelnykh sredstv v nauchnykh issledovaniyakh i uchebnom protsesse, Sbornik statei, Izd-vo Mosk. un-ta, M., 1991, 49–62

[3] Morozov V.V., Romanov S.I., “Zadacha ob optimalnom naznachenii kak kooperativnaya igra”, Prikladnaya matematika i informatika, Trudy fakulteta VMK MGU imeni M.V. Lomonosova, 74, MAKS-Press, M., 2023, 19–26

[4] Timokhov A.V., Sukharev A.G., Fedorov V.V., Kurs metodov optimizatsii, Nauka, M., 1986 | MR

[5] Curiel I.J., Cooperative game theory and applications, Ph.D. dissertation, University of Nijmegen, Netherlands, 1988

[6] Kalai E., Zemel E., On totally balanced games and games of flow, Discussion paper No 413, Northwestern University, Illinois, 1980 | MR

[7] Peleg B., Sudhölter P., Introduction to the theory of cooperative games, Springer, Berlin, 2008 | MR

[8] Shapley L.S., On balanced sets and cores, RM-4601-PR, The Rand Corporation, Santa Monica, California, 1965

[9] Shapley L.S., Shubik M., “On Market Games”, Journal of Economic Theory, 1:1 (1969), 9–25 | DOI | MR

[10] Tijs S.H., Parthasarathy T., Potters J.A.M., Rajendra Prasad V., “Permutation games: another class of totally balanced games”, Operations Research Spectrum, 6:2 (1984), 119–123 | DOI | MR | Zbl