Zoning of districts of the region according to the proximity to the external border
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 1, pp. 78-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

A map of a certain region with marked areas is considered. Zoning of map areas is carried out according to their proximity to the borders of the region. An algorithm for hierarchical classification of map regions is constructed, as a result of which they are divided according to the degree of their distance from the regional border. The shortest paths from various areas to the regional border are determined. In this case, the path length refers to the number of inter-district boundaries that the path crosses. The basis of these constructions is the definition of a dual to a planar graph depicting a map of the region. As an example, we consider a map of the administrative districts of Primorsky Krai, in which the districts are colored according to their proximity to the land border of the region.
Keywords: planar graph, dual graph, hierarchical classification of areas, proximity of the area to the external border, shortest paths to the external border.
@article{MGTA_2024_16_1_a4,
     author = {Gurami Sh. Tsitsiashvili and Vladimir N. Bocharnikov and Sergey M. Krasnopeyev},
     title = {Zoning of districts of the region according to the proximity to the external border},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {78--91},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2024_16_1_a4/}
}
TY  - JOUR
AU  - Gurami Sh. Tsitsiashvili
AU  - Vladimir N. Bocharnikov
AU  - Sergey M. Krasnopeyev
TI  - Zoning of districts of the region according to the proximity to the external border
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2024
SP  - 78
EP  - 91
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2024_16_1_a4/
LA  - ru
ID  - MGTA_2024_16_1_a4
ER  - 
%0 Journal Article
%A Gurami Sh. Tsitsiashvili
%A Vladimir N. Bocharnikov
%A Sergey M. Krasnopeyev
%T Zoning of districts of the region according to the proximity to the external border
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2024
%P 78-91
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2024_16_1_a4/
%G ru
%F MGTA_2024_16_1_a4
Gurami Sh. Tsitsiashvili; Vladimir N. Bocharnikov; Sergey M. Krasnopeyev. Zoning of districts of the region according to the proximity to the external border. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 1, pp. 78-91. http://geodesic.mathdoc.fr/item/MGTA_2024_16_1_a4/

[1] Gubko M.V., “Upravlenie organizatsionnymi sistemami s setevym vzaimodeistviem agentov. Chast 1. Obzor teorii setevykh igr”, Avtomatika i telemekhanika, 2004, no. 8, 115–132 | MR

[2] Dunishenko Yu.M., Ermolin A.B., Tigry v snegakh Priamurya, AO «Khabarovskaya kraevaya tipografiya», Khabarovsk, 2020

[3] Matyushkin E.N., “Vybor puti i osvoenie territorii amurskim tigrom (po dannym zimnikh troplenii)”, Povedenie mlekopitayuschikh, 1977, 146–178

[4] “Mnogougolnik”, Matematicheskaya entsiklopediya, v. 3, Sovetskaya Entsiklopediya, M., 1982

[5] Novikov D.A., Setevye struktury i organizatsionnye sistemy, IPU RAN, M., 2003

[6] Novikov D.A., Matematicheskie modeli formirovaniya i funktsionirovaniya komand, Fizmatlit, M., 2008

[7] Novikov D.A., “Kognitivnye igry: lineinaya impulsnaya model”, Problemy upravleniya, 2008, no. 3, 14–22

[8] Novikov D.A., Chkhartishvili A.G., Refleksivnye igry, Sinteg, M., 2003

[9] Petrosyan L.A., Zenkevich N.A., Semina E.A., Teoriya igr, Vysshaya shkola, M., 1998

[10] Pikunov D.G., Seredkin I.V., Solkin V.A., Amurskii tigr (istoriya izucheniya, dinamika areala, chislennosti, ekologiya i strategiya okhrany), Dalnauka, Vladivostok, 2010

[11] Pikunov D.G., Seredkin I.V., Solkin V.A., Amurskii tigr (istoriya izucheniya, dinamika areala, chislennosti, ekologiya i strategiya okhrany), Dalnauka, Vladivostok, 2010

[12] Prasolov V.V., Elementy kombinatornoi i differentsialnoi topologii, MTsNMO, M., 2004

[13] Yudin V.G., Yudina E.V., Tigr Dalnego Vostoka Rossii, Dalnauka, Vladivostok, 2009

[14] Axelrod R., The Structure of Decision: Cognitive Maps of Political Elite, Princeton University Press, Princeton, 1976

[15] Bocharnikov V.N., Fomenko P.V., Krasnopeev S.M., “Assessment of dynamics of Amur Tiger habitat quality influenced by natural and anthropogenic factors”, Integrated Tools For Natural Resources Inventories In The 21st Century (August 16-20, 1998, Boise, Idaho), 1998, 51–55 | MR

[16] Chan T.M., “More algorithms for all-pairs shortest paths in weighted graphs”, SIAM Journal on Computing, 39:5 (2010), 2075–2089 | DOI | MR | Zbl

[17] Harary F., Norman R.Z., Cartwright D., Structural Models: An Introduction to the Theory of Directed Graphs, Wiley, NY, 1965 | MR

[18] Jackson M., “The Stability and Efficiency of Economic and Social Networks”, Advances in Economic Design, 2003

[19] Myerson R., “Graphs and Cooperation in Games”, Math. Operations Research, 2 (1977), 225–229 | DOI | MR | Zbl