Multistage model for renewable resource exploitation by the players of two types
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 1, pp. 61-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper examines an infinite-horizon multistage game of renewable resource extraction with two types of players, differing in the discount rates of future payoffs. Using the dynamic programming method, a non-cooperative solution - a subgame perfect Nash equilibrium in stationary positional strategies, as well as a cooperative (Pareto-optimal) solution for the case of complete cooperation of all players were constructed. The resulting solutions were analyzed for sensitivity to changes in the model parameters, in particular, the range for the coefficient of natural resource renewal was found, in which a non-cooperative solution leads to complete depletion of the resource, while a cooperative scheme allows to avoid such a negative scenario. A numerical example is given to demonstrate the theoretical results obtained.
Keywords: multistage game, renewable resources, asymmetric players, Nash equilibria, cooperative solution, sensitivity analysis.
@article{MGTA_2024_16_1_a3,
     author = {Denis V. Kuzyutin and Nadezhda V. Smirnova and Igor R. Tantlevskij},
     title = {Multistage model for renewable resource exploitation by the players of two types},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {61--77},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2024_16_1_a3/}
}
TY  - JOUR
AU  - Denis V. Kuzyutin
AU  - Nadezhda V. Smirnova
AU  - Igor R. Tantlevskij
TI  - Multistage model for renewable resource exploitation by the players of two types
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2024
SP  - 61
EP  - 77
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2024_16_1_a3/
LA  - ru
ID  - MGTA_2024_16_1_a3
ER  - 
%0 Journal Article
%A Denis V. Kuzyutin
%A Nadezhda V. Smirnova
%A Igor R. Tantlevskij
%T Multistage model for renewable resource exploitation by the players of two types
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2024
%P 61-77
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2024_16_1_a3/
%G ru
%F MGTA_2024_16_1_a3
Denis V. Kuzyutin; Nadezhda V. Smirnova; Igor R. Tantlevskij. Multistage model for renewable resource exploitation by the players of two types. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 1, pp. 61-77. http://geodesic.mathdoc.fr/item/MGTA_2024_16_1_a3/

[1] Mazalov V.V., Rettieva A.N., “Ravnovesie po Neshu v zadachakh okhrany okruzhayuschei sredy”, Matematicheskoe modelirovanie, 18:5 (2006), 73–90 | MR | Zbl

[2] Petrosyan L.A., Kuzyutin D.V., Igry v razvernutoi forme: optimalnost i ustoichivost, Izd-vo SPbGU, SPb, 2000 | MR

[3] Rettieva A.N., “Usloviya koalitsionnoi ustoichivosti v dinamicheskikh mnogokriterialnykh igrakh”, Trudy instituta matematiki i mekhaniki UrO RAN, 25, no. 3, 2019, 200–216 | Zbl

[4] Breton M., Dahmouni I., Zaccour G., “Equilibria in a two-species fishery”, Math. Biosci., 309 (2019), 78–91 | DOI | MR | Zbl

[5] Breton M., Keoula M. Y., “A great fish war model with asymmetric players”, Ecological Economics, 97 (2014), 209–223 | DOI

[6] Cabo F., Tidball M., “Cooperation in a Dynamic Setting with Asymmetric Environmental Valuation and Responsibility”, Dyn Games Appl., 12 (2022), 844–871 | DOI | MR | Zbl

[7] Dahmouni I., Parilina E.M., Zaccour G., “Great fish war with moratorium”, Math. Biosci., 355 (2023), 108939 | DOI | MR | Zbl

[8] Dahmouni I., Sumaila R., “A dynamic game model for no-take marine reserves”, Ecological Modelling, 481 (2023), 110360 | DOI

[9] Haurie A., Krawczyk J.B., Zaccour G., Games and Dynamic Games, Scientific World, Singapore, 2012 | MR

[10] Kaitala V. T., Lindroos M., “Game Theoretic Applications to Fisheries”, Handbook Of Operations Research In Natural Resources, International Series In Operations Research Mana, 99, eds. Weintraub A., Romero C., Bjørndal T., Epstein R., Miranda J., Springer, Boston, MA, 2007 | Zbl

[11] Kuzyutin D., Lipko I., Pankratova Y., Tantlevskij I., Cooperation Enforcing in Multistage Multicriteria Game: New Algorithm and Its Implementation, Frontiers of Dynamic Games. Static Dynamic Game Theory: Foundations Applications, eds. Petrosyan L., Mazalov V., Zenkevich N., Birkhäuser, Cham, 2020 | MR | Zbl

[12] Kuzyutin D., Skorodumova Y., Smirnova N., “A Cooperation Scheme in Multistage Game of Renewable Resource Extraction with Asymmetric Players”, Mathematical Optimization Theory and Operations Research, MOTOR 2022, LNCS, 13367, 2022, 235–249 | MR | Zbl

[13] Kuzyutin D., Smirnova N., “Multi-criteria game with environmentally concerned players”, Economics Letters, 226 (2023), 111078 | DOI | MR | Zbl

[14] Kuzyutin D., Smirnova N., “Sustainable cooperation in bicriteria game of renewable resource extraction”, Mathematics, 11 (2023), 1497 | DOI

[15] Levhari D., Mirman L. J., “The Great Fish War: An Example Using a Dynamic Cournot–Nash solution”, The Bell Journal of Economics, 11:1 (1980), 322–334 | DOI | MR

[16] Long N. V., “Dynamic Games in the Economics of Natural Resources: A Survey”, Dyn Games Appl., 1 (2011), 115–148 | DOI | MR | Zbl

[17] Mazalov V.V., Rettieva A.N., “The discrete-time bioresource sharing model”, J. Appl. Math. Mech., 75 (2011), 180–188 | DOI | MR | Zbl

[18] Mazalov V. V., Rettieva A. N., “Cooperation maintenance in fishery problems”, Fishery Management, Nova Science Publishers, 2012, 151–198

[19] Mazalov V.V., Rettieva A.N., “Asymmetry in a cooperative bioresource management problem”, Game-Theoretic Models in Mathematical Ecology, Nova Science Publishers, 2015, 113–152 | MR | Zbl

[20] Mazalov V.V., Rettieva A.N., “Exploitation and recovery periods in dynamic resource management problem”, MOTOR 2023, LNCS, 13930, eds. Khachay et al., 2023, 288–299 | MR

[21] Nash J.F., “Equilibrium points in $n$-person games”, Proc. Nat. Acad. Sci. USA, 36 (1950), 48–49 | DOI | MR

[22] Parilina E.M., Zaccour G., “Payment schemes for sustaining cooperation in dynamic games”, J. Econ. Dyn. Control, 139 (2022), 104440 | DOI | MR

[23] Petrosyan L., “Time-consistency of solutions in multi-player differential games”, Astronomy, 4 (1977), 46–52 | MR | Zbl

[24] Petrosyan L.A., Danilov N.N., “Stability of solutions in non-zero sum differential games with transferable payoffs”, Astronomy, 1 (1979), 52–59 | MR | Zbl

[25] Pintassilgo P., Finus M., Lindroos M., Munro G. R., “Stability and Success of Regional Fisheries Management Organizations”, Environmental and Resource Economics, 46 (2010), 377–402 | DOI

[26] Rettieva A.N., “Stable Coalition Structure in Bioresource Management Problem”, Ecological Modelling, 235–236 (2012), 102–118 | DOI

[27] Rettieva A.N., “A discrete-time bioresource management problem with asymmetric players”, Automation and Remote Control, 75:9 (2014), 1665–1676 | DOI

[28] Rettieva A., “Cooperation in bioresource management problems”, Contributions to Game Theory and Management, 10, eds. Petrosyan L.A., Zenkevich N.A., Petersburg State Univ., St. Petersburg, 2017, 245–286 | MR

[29] Rettieva A. N., “Coalition stability in dynamic multicriteria games”, Lecture Notes in Computer Science, 11548, 2019, 697–714 | DOI | MR | Zbl

[30] Rettieva A.N., “Dynamic multicriteria games with asymmetric players”, J Glob Optim., 83 (2022), 521–537 | DOI | MR | Zbl

[31] Selten R., “Reexamination of the Perfectness Concept for Equilibrium Points in Extensive Games”, Int. J. Game Theory, 4 (1975), 25–55 | DOI | MR | Zbl

[32] Tantlevskij I.R., Language of enmity and etiology of conflict in a historical and philosophical perspective, Russian Christian Academy for Humanities Press, St. Petersburg, 2022

[33] Yeung D., Petrosyan L., Subgame Consistent Economic Optimization: An Advanced Cooperative Dynamic Game Analysis, Springer, New York, NY, USA, 2012 | MR