Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2024_16_1_a1, author = {Vladislav I. Zhukovskiy and Lidiya V. Zhukovskaya and Lidiya V. Smirnova}, title = {Coalition {Pareto-optimal} solution in a nontransferable game}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {12--43}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2024_16_1_a1/} }
TY - JOUR AU - Vladislav I. Zhukovskiy AU - Lidiya V. Zhukovskaya AU - Lidiya V. Smirnova TI - Coalition Pareto-optimal solution in a nontransferable game JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2024 SP - 12 EP - 43 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2024_16_1_a1/ LA - ru ID - MGTA_2024_16_1_a1 ER -
%0 Journal Article %A Vladislav I. Zhukovskiy %A Lidiya V. Zhukovskaya %A Lidiya V. Smirnova %T Coalition Pareto-optimal solution in a nontransferable game %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2024 %P 12-43 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2024_16_1_a1/ %G ru %F MGTA_2024_16_1_a1
Vladislav I. Zhukovskiy; Lidiya V. Zhukovskaya; Lidiya V. Smirnova. Coalition Pareto-optimal solution in a nontransferable game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 1, pp. 12-43. http://geodesic.mathdoc.fr/item/MGTA_2024_16_1_a1/
[1] Germeier Yu. B., Vatel I. A., “Igry s ierarkhicheskim vektorom interesov”, Tekhnicheskaya kibernetika, 1974, no. 3
[2] Zhukovskii V. I., Chikrii A. A., Differentsialnye uravneniya. Lineino-kvadratichnye differentsialnye igry, uchebnoe posobie dlya vuzov, Yurait, M., 2020
[3] Zhukovskii V. I., Kudryavtsev K. N., Zhukovskaya L. V., Stabulit I. S., “K individualnoi ustoichivosti paretovskogo ravnovesiya ugroz i kontrugroz v odnoi koalitsionnoi differentsialnoi igre s netransferabelnymi vyigryshami”, Matematicheskaya teoriya igr i ee prilozheniya, 13:1 (2021), 89–101 | MR | Zbl
[4] Zhukovskii V. I., Zhiteneva Yu. N., Belskikh Yu. A., “Paretovskoe ravnovesie ugroz i kontrugroz v odnoi differentsialnoi igre trekh lits”, Matematicheskaya teoriya igr i ee prilozheniya, 11:1 (2019), 39–72 | MR | Zbl
[5] Iskakov M. B., “Ravnovesie v bezopasnykh strategiyakh i ravnovesiya v ugrozakh i kontrugrozakh v nekooperativnykh igrakh”, Avtomatika i telemekhanika, 2008, no. 2, 114–134 | Zbl
[6] Karlin S., Matematicheskie metody v teorii igr, programmirovanii i ekonomike, Mir, M., 1964
[7] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR
[8] Kukushkin N. S., Menshikov I. S., Menshikova O. R., Moiseev N. N., “Ustoichivye kompromissy v igrakh so strukturirovannymi funktsiyami vyigrysha”, Zh. vychisl matem. i matem. fiz., 25:12 (1985), 1761–1776 | MR | Zbl
[9] Parilina E. M., Petrosyan L. A., “Novyi podkhod k opredeleniyu kharakteristicheskoi funktsii v stokhasticheskikh igrakh”, Ustoichivost, upravlenie, differentsialnye igry, SCDG 2019, Materialy Mezhdunarodnoi konferentsii, posvyaschennoi 95-letiyu so dnya rozhdeniya akademika N. N. Krasovskogo (Ekaterinburg, 16–20 sentyabrya 2019 g.), IMM UrO RAN, Ekaterinburg, 2019, 243–247
[10] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Fizmatlit, M., 2007
[11] Case J. H., “A class of games having Pareto optimal Nash equilibrium”, J. Optimiz. Theory and Appl., 13:3 (1974), 378–385 | DOI | MR
[12] Mazalov V. V., Rettieva A. N., “Fish wars and cooperation maintenance”, Ecological Modelling, 221:12 (2010), 1545–1553 | DOI
[13] Mazalov V., Parilina E., “The Euler-Equation Approach in Average-Oriented Opinion Dynamics”, Mathematics, 8:3 (2020), 355 | DOI
[14] Nash J., “Equilibrium Points in N-Person Games”, Proc. Natl. Academ. Sci. USA, 36:1 (1950), 48–49 | DOI | MR | Zbl
[15] Nash J., “Non-Cooperative Games”, Annales of Mathematics, 54:2 (1951), 286–295 | DOI | MR | Zbl
[16] Parilina E., Petrosyan L., “On a Simplified Method of Defining Characteristic Function in Stochastic Games”, Mathematics, 8:7 (2020), 1135 | DOI
[17] Parker W. V., “The characteristic roots of a matrix”, Duke Math. J., 3:3 (1937), 484–487 | DOI | MR | Zbl
[18] Salukvadze M. E., Zhukovskiy V. I., The Berge Equilibrium: A Game-Theoretic Framework for the Golden Rule of Ethics, Springer Nature Switzerland AG, 2020 | MR
[19] Zhukovskiy V. I., Salukvadze M. E., Mazurov A. Yu., The Golden Rule of Ethics: A Dynamic Game-Theoretic Framework Based on Berge Equilibrium, Taylor and Francis, London–New York, 2021 | MR