Coalition Pareto-optimal solution in a nontransferable game
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 1, pp. 12-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

By the end of the last century, four directions had been established in the mathematical theory of differential positional games (DPI): a non-coalition version of DPI, a cooperative, hierarchical and, finally, the least studied, a coalition version of DPI. In turn, within the coalition, there are usually games with transferable payoffs (with side payments, when players can share their winnings during the game) and nontransferable winnings (games with side payments, when such redistributions are absent for one reason or another). Studies of coalition games with side payments are concentrated and actively conducted at the Faculty of Applied Mathematics and Management Processes of St. Petersburg State University and Institute of Applied Mathematical Research of the Karelian Research Centre of RAS (Professors L,A. Petrosyan, V. V. Mazalov, E. M. Parilina, A. N. Rettieva and their numerous domestic and foreign students). However, side payments are not always present even in economic interactions, moreover, side payments may be generally prohibited by law. The studies we have undertaken in recent years on the balance of threats and counter-threats (sanctions and counter-sanctions) in non-coalition differential games allow, in our opinion, to cover some aspects of the non-transferable version of coalition games. This article is devoted to the issues of internal and external stability of coalitions in the DPI class. It reveals the coefficient constraints in the mathematical model of the differential positional linear-quadratic game of six persons with a two-coalition structure, in which this coalition structure is internally and externally stable.
Keywords: Nash equilibrium, balance of threats and counter-threats, Pareto optimality, efficiency
Mots-clés : coalition.
@article{MGTA_2024_16_1_a1,
     author = {Vladislav I. Zhukovskiy and Lidiya V. Zhukovskaya and Lidiya V. Smirnova},
     title = {Coalition {Pareto-optimal} solution in a nontransferable game},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {12--43},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2024_16_1_a1/}
}
TY  - JOUR
AU  - Vladislav I. Zhukovskiy
AU  - Lidiya V. Zhukovskaya
AU  - Lidiya V. Smirnova
TI  - Coalition Pareto-optimal solution in a nontransferable game
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2024
SP  - 12
EP  - 43
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2024_16_1_a1/
LA  - ru
ID  - MGTA_2024_16_1_a1
ER  - 
%0 Journal Article
%A Vladislav I. Zhukovskiy
%A Lidiya V. Zhukovskaya
%A Lidiya V. Smirnova
%T Coalition Pareto-optimal solution in a nontransferable game
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2024
%P 12-43
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2024_16_1_a1/
%G ru
%F MGTA_2024_16_1_a1
Vladislav I. Zhukovskiy; Lidiya V. Zhukovskaya; Lidiya V. Smirnova. Coalition Pareto-optimal solution in a nontransferable game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 1, pp. 12-43. http://geodesic.mathdoc.fr/item/MGTA_2024_16_1_a1/

[1] Germeier Yu. B., Vatel I. A., “Igry s ierarkhicheskim vektorom interesov”, Tekhnicheskaya kibernetika, 1974, no. 3

[2] Zhukovskii V. I., Chikrii A. A., Differentsialnye uravneniya. Lineino-kvadratichnye differentsialnye igry, uchebnoe posobie dlya vuzov, Yurait, M., 2020

[3] Zhukovskii V. I., Kudryavtsev K. N., Zhukovskaya L. V., Stabulit I. S., “K individualnoi ustoichivosti paretovskogo ravnovesiya ugroz i kontrugroz v odnoi koalitsionnoi differentsialnoi igre s netransferabelnymi vyigryshami”, Matematicheskaya teoriya igr i ee prilozheniya, 13:1 (2021), 89–101 | MR | Zbl

[4] Zhukovskii V. I., Zhiteneva Yu. N., Belskikh Yu. A., “Paretovskoe ravnovesie ugroz i kontrugroz v odnoi differentsialnoi igre trekh lits”, Matematicheskaya teoriya igr i ee prilozheniya, 11:1 (2019), 39–72 | MR | Zbl

[5] Iskakov M. B., “Ravnovesie v bezopasnykh strategiyakh i ravnovesiya v ugrozakh i kontrugrozakh v nekooperativnykh igrakh”, Avtomatika i telemekhanika, 2008, no. 2, 114–134 | Zbl

[6] Karlin S., Matematicheskie metody v teorii igr, programmirovanii i ekonomike, Mir, M., 1964

[7] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR

[8] Kukushkin N. S., Menshikov I. S., Menshikova O. R., Moiseev N. N., “Ustoichivye kompromissy v igrakh so strukturirovannymi funktsiyami vyigrysha”, Zh. vychisl matem. i matem. fiz., 25:12 (1985), 1761–1776 | MR | Zbl

[9] Parilina E. M., Petrosyan L. A., “Novyi podkhod k opredeleniyu kharakteristicheskoi funktsii v stokhasticheskikh igrakh”, Ustoichivost, upravlenie, differentsialnye igry, SCDG 2019, Materialy Mezhdunarodnoi konferentsii, posvyaschennoi 95-letiyu so dnya rozhdeniya akademika N. N. Krasovskogo (Ekaterinburg, 16–20 sentyabrya 2019 g.), IMM UrO RAN, Ekaterinburg, 2019, 243–247

[10] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Fizmatlit, M., 2007

[11] Case J. H., “A class of games having Pareto optimal Nash equilibrium”, J. Optimiz. Theory and Appl., 13:3 (1974), 378–385 | DOI | MR

[12] Mazalov V. V., Rettieva A. N., “Fish wars and cooperation maintenance”, Ecological Modelling, 221:12 (2010), 1545–1553 | DOI

[13] Mazalov V., Parilina E., “The Euler-Equation Approach in Average-Oriented Opinion Dynamics”, Mathematics, 8:3 (2020), 355 | DOI

[14] Nash J., “Equilibrium Points in N-Person Games”, Proc. Natl. Academ. Sci. USA, 36:1 (1950), 48–49 | DOI | MR | Zbl

[15] Nash J., “Non-Cooperative Games”, Annales of Mathematics, 54:2 (1951), 286–295 | DOI | MR | Zbl

[16] Parilina E., Petrosyan L., “On a Simplified Method of Defining Characteristic Function in Stochastic Games”, Mathematics, 8:7 (2020), 1135 | DOI

[17] Parker W. V., “The characteristic roots of a matrix”, Duke Math. J., 3:3 (1937), 484–487 | DOI | MR | Zbl

[18] Salukvadze M. E., Zhukovskiy V. I., The Berge Equilibrium: A Game-Theoretic Framework for the Golden Rule of Ethics, Springer Nature Switzerland AG, 2020 | MR

[19] Zhukovskiy V. I., Salukvadze M. E., Mazurov A. Yu., The Golden Rule of Ethics: A Dynamic Game-Theoretic Framework Based on Berge Equilibrium, Taylor and Francis, London–New York, 2021 | MR