Potential game in parallel transport network with symmetric externalities
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 4, pp. 94-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers a model of a transport system with parallel channels and BPR delay functions with symmetric linear externalities. We consider the case where the impact of channel loads to the delay is pairwise symmetric. For this case, it is proved that the game of traffic allocation among channels is potential, and the price of anarchy is limited by the value $\frac{4}{3}$.
Keywords: Wardrop equilibrium, optimal profile, social costs, Price of Anarchy, externalities.
@article{MGTA_2023_15_4_a4,
     author = {Julia V. Chirkova},
     title = {Potential game in parallel transport network with symmetric externalities},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {94--105},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_4_a4/}
}
TY  - JOUR
AU  - Julia V. Chirkova
TI  - Potential game in parallel transport network with symmetric externalities
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2023
SP  - 94
EP  - 105
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2023_15_4_a4/
LA  - ru
ID  - MGTA_2023_15_4_a4
ER  - 
%0 Journal Article
%A Julia V. Chirkova
%T Potential game in parallel transport network with symmetric externalities
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2023
%P 94-105
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2023_15_4_a4/
%G ru
%F MGTA_2023_15_4_a4
Julia V. Chirkova. Potential game in parallel transport network with symmetric externalities. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 4, pp. 94-105. http://geodesic.mathdoc.fr/item/MGTA_2023_15_4_a4/

[1] Gantmakher F.R., Teoriya matrits, Nauka, M., 1968 | MR

[2] Sukharev A.G., Timokhov A.V., Fedorov V.V., Kurs metodov optimizatsii, 1986 | MR

[3] Acemoglu D., Ozdaglar A., Flow control, routing, and performance from service provider viewpoint, LIDS report, 2004, 74 pp. | Zbl

[4] Braess D., “Uber ein Paradoxon der Verkehrsplanung”, Unternehmensforschung, 12 (1968), 258–268 | MR | Zbl

[5] Chirkova J.V., Mazalov V.V., “Optimal externalities in a parallel transportation network”, Optimization Letters, 16 (2022), 1971–1989 | DOI | MR | Zbl

[6] Correa J.R., Stier-Moses N.E., Wardrop Equilibria, John Wiley Sons, Inc, 2011

[7] Easley D., Kleinberg J., Networks, Crowds, and Markets: Reasoning about Highly Connected World, Cambridge University Press, Cambridge, 2010 | MR | Zbl

[8] Gairing M., Monien B., Tiemann K., “Routing (Un-) Splittable Flow in Games with Player-Specific Linear Latency Functions”, LNCS, 4051, 2006, 501–512 | MR | Zbl

[9] Gao H., Mazalov V.V. and Xue J., “Optimal Parameters of Service in a Public Transportation Market with Pricing”, Journal of Advanced Transportation, 2020, Safety, Behavior, and Sustainability under the Mixed Traffic Flow Environment (2020)

[10] Holzman R., Monderer D., “Strong equilibrium in network congestion games: Increasing versus decreasing costs”, International Journal of Game Theory, 44 (2015), 647–666 | DOI | MR | Zbl

[11] Jacobs J., The economy of cities, Random House, New York, 1969

[12] Krylatov A.Y., Zakharov V.V., Malygin I.G., “Competitive Traffic Assignment in Road Networks”, Transport and Telecommunication, 17:3 (2016), 212–221 | DOI | MR

[13] Kuang Z., Lian Z., Lien J.W., Zheng J., “Serial and parallel duopoly competition in multi-segment transportation routes”, Transportation Research Part E: Logistics and Transportation Review, 133 (2020), 101821 | DOI

[14] Kuang Z., Mazalov V.V., Tang X., Zheng J., “Transportation network with externalities”, J. Comput. Appl. Math., 382 (2021), 113091 | DOI | MR | Zbl

[15] Mak V., Seale D.A., Gishces E.J. et al., “The Braess Paradox and Coordination Failure in Directed Networks with Mixed Externalities”, Production and Operations Management, 27:4 (2018), 717–733 | DOI

[16] Milchtaich I., “Congestion games with player-specific payoff functions”, Games and Economic Behavior, 13 (1996), 111–124 | DOI | MR | Zbl

[17] Milchtaich I., “Network topology and the efficiency of equilibrium”, Games and Economic Behavior, 57:2 (2006), 321–346 | DOI | MR | Zbl

[18] Monderer D., Shapley L., “Potential games”, Games and Economic Behavior, 14 (1996), 124–143 | DOI | MR | Zbl

[19] Papadimitriou C. H., Koutsoupias E., “Worst-Case Equilibria”, LNSC, 1563, 1999, 404–413 | MR | Zbl

[20] Rosenthal R.W., “A class of games possessing pure-strategy Nash equilibria”, Int. Journal of Game Theory, 2 (1973), 65–67 | DOI | MR | Zbl

[21] Roughgarden T., “The price of anarchy is independent of the network topology”, J. Journal of Computer and System Sciences, 67 (2003), 341–364 | DOI | MR | Zbl

[22] Roughgarden T., Tardos E., How bad is selfish routing?, Foundations of Computer Science, Proceedings, 2002, 93–102 | MR

[23] Sheffi Y., Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods, Prentice-Hall, 1984

[24] U.S. Bureau of Public Roads, Traffic Assignment Manual, U.S. Department of Commerce, Washington, D.C., 1964

[25] Wardrop J.G., “Some theoretical aspects of road traffic research”, ICE Proc. Eng. Divisions, v. 1, 1952, 325–362

[26] Zakharov V., Krylatov A., “Transist Network Design for Green Vehicles Routing”, Advances in Intelligent Systems and Computing, 360 (2015), 449–458 | DOI | Zbl