Potential in congestion game with different types of vehicles
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 4, pp. 79-93

Voir la notice de l'article provenant de la source Math-Net.Ru

Heterogeneous congestion games make it possible to simulate traffic situations involving multiple classes of vehicles with different preferences in choosing routes. In the presented work, we prove the existence of a potential in a discrete congestion game with $n$ classes of players. Examples are given of calculating equilibria and the emergence of the Braess paradox, as well as the use of the constructed congestion game to analyze the distribution of vehicles in the graph of urban roads of the city of Petrozavodsk.
Keywords: congestion game, routing game, potential, Nash equilibrium, Braess paradox, transport graph.
@article{MGTA_2023_15_4_a3,
     author = {Natalia N. Nikitina and Vladimir V. Mazalov},
     title = {Potential in congestion game with different types of vehicles},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {79--93},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_4_a3/}
}
TY  - JOUR
AU  - Natalia N. Nikitina
AU  - Vladimir V. Mazalov
TI  - Potential in congestion game with different types of vehicles
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2023
SP  - 79
EP  - 93
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2023_15_4_a3/
LA  - ru
ID  - MGTA_2023_15_4_a3
ER  - 
%0 Journal Article
%A Natalia N. Nikitina
%A Vladimir V. Mazalov
%T Potential in congestion game with different types of vehicles
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2023
%P 79-93
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2023_15_4_a3/
%G ru
%F MGTA_2023_15_4_a3
Natalia N. Nikitina; Vladimir V. Mazalov. Potential in congestion game with different types of vehicles. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 4, pp. 79-93. http://geodesic.mathdoc.fr/item/MGTA_2023_15_4_a3/