Potential in congestion game with different types of vehicles
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 4, pp. 79-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

Heterogeneous congestion games make it possible to simulate traffic situations involving multiple classes of vehicles with different preferences in choosing routes. In the presented work, we prove the existence of a potential in a discrete congestion game with $n$ classes of players. Examples are given of calculating equilibria and the emergence of the Braess paradox, as well as the use of the constructed congestion game to analyze the distribution of vehicles in the graph of urban roads of the city of Petrozavodsk.
Keywords: congestion game, routing game, potential, Nash equilibrium, Braess paradox, transport graph.
@article{MGTA_2023_15_4_a3,
     author = {Natalia N. Nikitina and Vladimir V. Mazalov},
     title = {Potential in congestion game with different types of vehicles},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {79--93},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_4_a3/}
}
TY  - JOUR
AU  - Natalia N. Nikitina
AU  - Vladimir V. Mazalov
TI  - Potential in congestion game with different types of vehicles
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2023
SP  - 79
EP  - 93
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2023_15_4_a3/
LA  - ru
ID  - MGTA_2023_15_4_a3
ER  - 
%0 Journal Article
%A Natalia N. Nikitina
%A Vladimir V. Mazalov
%T Potential in congestion game with different types of vehicles
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2023
%P 79-93
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2023_15_4_a3/
%G ru
%F MGTA_2023_15_4_a3
Natalia N. Nikitina; Vladimir V. Mazalov. Potential in congestion game with different types of vehicles. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 4, pp. 79-93. http://geodesic.mathdoc.fr/item/MGTA_2023_15_4_a3/

[1] Baimurzina D.R., Gasnikov A.V., Gasnikova E.V. i dr., “Universalnyi metod poiska ravnovesii i stokhasticheskikh ravnovesii v transportnykh setyakh”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 59:1 (2019), 21–36 | DOI | MR | Zbl

[2] Gasnikov A.V., Dvurechenskii P.E., Dorn Yu.V., Maksimov Yu.V., “Chislennye metody poiska ravnovesnogo raspredeleniya potokov v modeli Bekmana i v modeli stabilnoi dinamiki”, Matematicheskoe modelirovanie, 28:10 (2016), 40–64 | MR

[3] Gasnikova E.V., Gasnikov A.V., Yarmoshik D.V. i dr., “O mnogostadiinoi transportnoi modeli i dostatochnykh usloviyakh ee potentsialnosti”, MTIiP, 23:2 (2023), 3–17 | MR

[4] Mazalov V.V., Chirkova Yu.V., Setevye igry, Lan, SPb, 2018

[5] Acemoglu D., Makhdoumi A., Malekian A., Ozdaglar A., “Informational Braess' paradox: The effect of information on traffic congestion”, Operations Research, 66:4 (2018), 893–917 | DOI | MR | Zbl

[6] Cianfanelli L., Como G., “On stability of users equilibria in heterogeneous routing games”, 2019 IEEE 58th Conference on Decision and Control (CDC), IEEE, 2019, 355–360 | DOI

[7] Dafermos S.C., “The traffic assignment problem for multiclass-user transportation networks”, Transportation science, 6:1 (1972), 73–87 | DOI

[8] Ermolin N.A., Khitraya V.A., Khitryi A.V., Mazalov V.V., Nikitina N.N., “Modeling of the City's Transport Network Using Game-Theoretic Methods on the Example of Petrozavodsk”, Contributions to Game Theory and Management, 15 (2022), 18–31 | DOI | MR

[9] Farokhi F., Johansson K.H., “A game-theoretic framework for studying truck platooning incentives”, 16th international IEEE conference on intelligent transportation systems, ITSC 2013, 2013, 1253–1260

[10] Farokhi F., Krichene W., Bayen A.M., Johansson K.H., “A heterogeneous routing game”, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2013, 448–455 | DOI

[11] Farokhi F., Krichene W., Bayen A.M., Johansson K.H., A necessary and sufficient condition for the existence of potential functions for heterogeneous routing games, 2013, 13 pp., arXiv: 1312.1075

[12] Ferguson B.L., Brown P.N., Marden J.R., “The effectiveness of subsidies and tolls in congestion games”, IEEE Transactions on Automatic Control, 67:6 (2021), 2729–2742 | DOI | MR

[13] Huang K., Chen X., Di X., Du Q., “Dynamic driving and routing games for autonomous vehicles on networks: A mean field game approach”, Transportation Research Part C: Emerging Technologies, 128 (2021), 103189 | DOI

[14] Mehr N., Horowitz R., How will the presence of autonomous vehicles affect the equilibrium state of traffic networks?, IEEE Transactions on Control of Network Systems, 7:1 (2019), 96–105 | DOI | MR

[15] Rosental R.W., “A class of Games Posessing Pure Strategy Nash Equilibria”, Int. J. of Game Theory, 2 (1973), 65–67 | DOI | MR

[16] Stern E., Richardson H.W., “Behavioural modelling of road users: current research and future needs”, Transport Reviews, 25:2 (2005), 159–180 | DOI

[17] Thai J., Laurent-Brouty N., Bayen A.M., “Negative externalities of GPS-enabled routing applications: A game theoretical approach”, 2016 IEEE 19th international conference on intelligent transportation systems (ITSC), IEEE, 2016, 595–601

[18] Wang J., Jiang K., Wu Y., “On congestion games with player-specific costs and resource failures”, Automatica, 142 (2022), 110367 | DOI | MR | Zbl

[19] Wu M., Liu J., Amin S., “Informational aspects in a class of Bayesian congestion games”, 2017 American Control Conference (ACC), IEEE, 2017, 3650–3657