A model of a two-level hierarchical system with cooperative behavior of lower-level elements
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 4, pp. 28-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the possible generalizations to the case of many persons of the classical hierarchical Germeier game is investigated. It is assumed that the lower level players choose one of the weakly efficient points. The maximal guaranteed result of the top-level player is calculated. Two variants of formulation of the problems are considered: games with and without feedback.
Keywords: hierarchical games, maximal guaranteed result, multi-objective problems.
@article{MGTA_2023_15_4_a1,
     author = {Mikhail A. Gorelov},
     title = {A model of a two-level hierarchical system with cooperative behavior of lower-level elements},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {28--53},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_4_a1/}
}
TY  - JOUR
AU  - Mikhail A. Gorelov
TI  - A model of a two-level hierarchical system with cooperative behavior of lower-level elements
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2023
SP  - 28
EP  - 53
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2023_15_4_a1/
LA  - ru
ID  - MGTA_2023_15_4_a1
ER  - 
%0 Journal Article
%A Mikhail A. Gorelov
%T A model of a two-level hierarchical system with cooperative behavior of lower-level elements
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2023
%P 28-53
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2023_15_4_a1/
%G ru
%F MGTA_2023_15_4_a1
Mikhail A. Gorelov. A model of a two-level hierarchical system with cooperative behavior of lower-level elements. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 4, pp. 28-53. http://geodesic.mathdoc.fr/item/MGTA_2023_15_4_a1/

[1] Germeier Yu.B., “Ob igrakh dvukh lits s fiksirovannoi posledovatelnostyu khodov”, Doklady AN SSSR, 198:5 (1971), 1001–1004 | Zbl

[2] Germeier Yu.B., Vvedenie v teoriyu issledovaniya operatsii, Nauka, M., 1971 | MR

[3] Germeier Yu.B., Igry s neprotivopolozhnymi interesami, Nauka, M., 1976

[4] Gorelov M.A., “Maksimalnyi garantirovannyi rezultat v ierarkhicheskikh igrakh”, Upravlenie bolshimi sistemami, 67 (2017), 4–31

[5] Gorelov M.A., “Delegirovanie polnomochii v ierarkhicheskikh sistemakh”, Matematicheskaya teoriya igr i ee prilozheniya, 11:4 (2019), 44–66 | MR | Zbl

[6] Gorelov M.A., “Model dvukhurovnevoi ierarkhicheskoi sistemy s nekooperativnym povedeniem elementov nizhnego urovnya”, Matematicheskaya teoriya igr i ee prilozheniya, 14:4 (2022), 45–68 | Zbl

[7] Kononenko A.F., “Rol informatsii o funktsii tseli protivnika v igrakh dvukh lits s fiksirovannoi posledovatelnostyu khodov”, Zh. vychisl. matem. i matem. fiz., 13:2 (1973), 311–317 | Zbl

[8] Morozov V.V., Sukharev A.G., Fedorov V.V., Issledovanie operatsii v zadachakh i uprazhneniyakh, Vysshaya shkola, M., 1986