UCB strategies and optimization of batch processing in a one-armed bandit problem
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 4, pp. 3-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a Gaussian one-armed bandit problem, which arises when optimizing batch data processing if there are two alternative processing methods with a priori known efficiency of the first method. During processing, it is necessary to determine a more effective method and ensure its preferential use. This optimal control problem is interpreted as a game with nature. We investigate cases of known and a priori unknown variance of income corresponding to the second method. The control goal is considered in a minimax setting, and UCB strategies are used to ensure it. In all the studied cases, invariant descriptions of control on a horizon equal to one are obtained, which depend only on the number of batches into which the data is divided, but not on their full number. These descriptions allow us to determine approximately optimal parameters of strategies using Monte Carlo simulation. Numerical results show the high efficiency of the proposed UCB strategies.
Keywords: Gaussian one-armed bandit, minimax approach, UCB rule
Mots-clés : invariant description, Monte-Carlo simulations.
@article{MGTA_2023_15_4_a0,
     author = {Sergey V. Garbar and Alexander V. Kolnogorov and Alexey N. Lazutchenko},
     title = {UCB strategies and optimization of batch processing in a one-armed bandit problem},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--27},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_4_a0/}
}
TY  - JOUR
AU  - Sergey V. Garbar
AU  - Alexander V. Kolnogorov
AU  - Alexey N. Lazutchenko
TI  - UCB strategies and optimization of batch processing in a one-armed bandit problem
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2023
SP  - 3
EP  - 27
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2023_15_4_a0/
LA  - ru
ID  - MGTA_2023_15_4_a0
ER  - 
%0 Journal Article
%A Sergey V. Garbar
%A Alexander V. Kolnogorov
%A Alexey N. Lazutchenko
%T UCB strategies and optimization of batch processing in a one-armed bandit problem
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2023
%P 3-27
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2023_15_4_a0/
%G ru
%F MGTA_2023_15_4_a0
Sergey V. Garbar; Alexander V. Kolnogorov; Alexey N. Lazutchenko. UCB strategies and optimization of batch processing in a one-armed bandit problem. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 4, pp. 3-27. http://geodesic.mathdoc.fr/item/MGTA_2023_15_4_a0/

[1] Borovkov A.A., Matematicheskaya statistika, Dopolnitelnye glavy: Uchebnoe posobie dlya vuzov, Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1984

[2] Varshavskii V.I., Kollektivnoe povedenie avtomatov, Nauka, M., 1973

[3] Garbar S.V., Kolnogorov A.V., “Adaptatsiya strategii UCB Dzh. Basera dlya gaussovskogo mnogorukogo bandita”, MTIiP, 14:2 (2022), 3–30 | MR

[4] Kolnogorov A.V., “Robastnoe parallelnoe upravlenie v sluchainoi srede i optimizatsiya obrabotki dannykh”, Avtomat. i telemekh., 2014, no. 12, 42–55 | MR | Zbl

[5] Kolnogorov A.V., “Zadacha ob odnorukom bandite dlya sistem s parallelnoi obrabotkoi dannykh”, Probl. peredachi inform., 51:2 (2015), 99–113 | MR | Zbl

[6] Nazin A.V., Poznyak A.S., Adaptivnyi vybor variantov, Nauka, M., 1986

[7] Presman E.L., Sonin I.M., Posledovatelnoe upravlenie po nepolnym dannym, Nauka, M., 1982

[8] Satton R. S., Barto E. Dzh., Obuchenie s podkrepleniem: vvedenie, 2-e izd., DMK Press, M., 2020

[9] Smirnov D.S., Gromova E.V., “Model prinyatiya reshenii pri nalichii ekspertov kak modifitsirovannaya zadacha o mnogorukom bandite”, MTIP, 9:4 (2017), 69–87 | Zbl

[10] Sragovich V.G., Adaptivnoe upravlenie, Nauka, M., 1981

[11] Tsetlin M.L., Issledovaniya po teorii avtomatov i modelirovaniyu biologicheskikh sistem, Nauka, M., 1969

[12] Auer P., “Using confidence bounds for exploitation-exploration trade-offs”, J. of Machine Learning Research, 3 (2002), 397–422 | MR

[13] Auer P., Cesa-Bianchi N., Fisher P., “Finite-time analysis of the multi-armed bandit problem”, Machine Learning, 47:2–3 (2002), 235–256 | DOI | Zbl

[14] Bather J.A., “The minimax risk for the two-armed bandit problem”, Mathematical Learning Models – Theory and Algorithms, Lecture Notes in Statistics, 20, Springer-Verlag, NY, 1983, 1–11 | DOI | MR

[15] Berry D.A., Fristedt B., Bandit problems: sequential allocation of experiments, Chapman and Hall, London–New York, 1985 | MR | Zbl

[16] Bradt R.N., Johnson S.M., Karlin S., “On sequential designs for maximizing the sum of $n$ observations”, Ann. Math. Statist, 27 (1956), 1060–1074 | DOI | MR | Zbl

[17] Chernoff H., Ray S.N., “A Bayes sequential sampling inspection plan”, Ann. Math. Statist., 36 (1965), 1387–1407 | DOI | MR | Zbl

[18] Chernoff H., “Sequential models for clinical trials”, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, v. 4, eds. Le Cam L. M., Neyman J., 1967, 805–812 | MR

[19] Gittins J.C., Multi-armed bandit allocation indices, Wiley-Interscience Series in Systems and Optimization, John Wiley Sons, Ltd, Chichester, 1989 | MR | Zbl

[20] Kaufmann E., “On Bayesian index policies for sequential resource allocation”, Annals of Statist., 46:2 (2018), 842–865 | DOI | MR | Zbl

[21] Kolnogorov A., “Gaussian one-armed bandit problem”, 2021 XVIIth International symposium “Problems of redundancy in information and control systems”, IEEE, M., 2021, 74–79 | DOI | MR

[22] Kolnogorov A.V., “Gaussian one-armed bandit with both unknown parameters”, Siberian Electronic Mathematical Reports, 19:2 (2022), 639–650 | MR

[23] Lai T.L., Levin B., Robbins H., Siegmund D., “Sequential medical trials (stopping rules/asymptotic optimality)”, Proc. Nati. Acad. Sci. USA, 77:6 (1980), 3135–3138 | DOI | MR | Zbl

[24] Lai T.L., “Adaptive treatment allocation and the multi-armed bandit problem”, Annals of Statist., 25 (1987), 1091–1114 | MR

[25] Lattimore T., Szepesvari C., Bandit algorithms, Cambridge University Press, Cambridge, 2020 | Zbl

[26] Lugosi G., Cesa-Bianchi N., Prediction, learning and games, Cambridge University Press, Cambridge, 2006 | MR | Zbl

[27] Perchet V., Rigollet P., Chassang S., Snowberg E., “Batched bandit problems”, Annals of Statist., 44:2 (2016), 660–681 | DOI | MR | Zbl

[28] Vogel W., “An asymptotic minimax theorem for the two-armed bandit problem”, Ann. Math. Stat., 31 (1960), 444–451 | DOI | MR | Zbl