Game theoretic centrality of a directed graph vertices
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 3, pp. 64-87

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers a game theory approach to calculating the centrality value of the vertices in a directed graph, based on the number of vertex occurrences in fixed length paths. It is proposed to define vertex centrality as a solution of a cooperative game, where the characteristic function is given as the number of simple paths of fixed length in subgraphs corresponding to coalitions. The concept of integral centrality is introduced as the value of a definite integral of the payoff function. It is shown that this centrality measure satisfies the Boldi–Vigna axioms.
Keywords: graph theory, centrality, directed graph, cooperative game.
@article{MGTA_2023_15_3_a3,
     author = {Vitalia A. Khitraya and Vladimir V. Mazalov},
     title = {Game theoretic centrality of a directed graph vertices},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {64--87},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_3_a3/}
}
TY  - JOUR
AU  - Vitalia A. Khitraya
AU  - Vladimir V. Mazalov
TI  - Game theoretic centrality of a directed graph vertices
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2023
SP  - 64
EP  - 87
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2023_15_3_a3/
LA  - ru
ID  - MGTA_2023_15_3_a3
ER  - 
%0 Journal Article
%A Vitalia A. Khitraya
%A Vladimir V. Mazalov
%T Game theoretic centrality of a directed graph vertices
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2023
%P 64-87
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2023_15_3_a3/
%G ru
%F MGTA_2023_15_3_a3
Vitalia A. Khitraya; Vladimir V. Mazalov. Game theoretic centrality of a directed graph vertices. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 3, pp. 64-87. http://geodesic.mathdoc.fr/item/MGTA_2023_15_3_a3/