Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2023_15_3_a3, author = {Vitalia A. Khitraya and Vladimir V. Mazalov}, title = {Game theoretic centrality of a directed graph vertices}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {64--87}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_3_a3/} }
TY - JOUR AU - Vitalia A. Khitraya AU - Vladimir V. Mazalov TI - Game theoretic centrality of a directed graph vertices JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2023 SP - 64 EP - 87 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2023_15_3_a3/ LA - ru ID - MGTA_2023_15_3_a3 ER -
Vitalia A. Khitraya; Vladimir V. Mazalov. Game theoretic centrality of a directed graph vertices. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 3, pp. 64-87. http://geodesic.mathdoc.fr/item/MGTA_2023_15_3_a3/
[1] Aleskerov F.T., Khabina E.L., Shvarts D.A., Binarnye otnosheniya, grafy i kollektivnye resheniya. Primery i zadachi, ucheb. posobie dlya vuzov, Iz-vo Yurait, M., 2023
[2] Mazalov V.V., Khitraya V.A., “Ranzhirovanie vershin grafa s ispolzovaniem absolyutnykh potentsialov uzlov elektricheskoi tsepi”, Vestnik Sankt-Peterburgskogo universiteta. Prikladnaya matematika. Informatika. Protsessy upravleniya, 19:2 (2023), 233–251 | MR
[3] Scherbakova N.G., “Aksiomatika tsentralnosti v kompleksnykh setyakh”, Problemy informatiki, 2015, no. 3, 3–14
[4] Avrachenkov K.E., Kondratev A.Y., Mazalov V.V. Rybanov D.G., “Network partitioning algorithms as cooperative games”, Computational Social Networks, 5:11 (2018)
[5] Bavelas A., “A mathematical model for group structures”, Human organization, 7:3 (1948), 16–30 | DOI
[6] Bavelas A., “Communication patterns in task-oriented groups”, The journal of the acoustical society of America, 22:6 (1950), 725–30 | DOI
[7] Beauchamp M.A., “An improved index of centrality”, Behavioral Science, 10:2 (1965), 161–163 | DOI
[8] Boldi P., Vigna S., “Axioms for Centrality”, Internet Mathematics, 10:3–4 (2014), 222–262 | DOI | MR | Zbl
[9] Ermolin N.A., Khitraya V.A., Khitryi A.V., Mazalov V.V. and Nikitina N.N., “Modeling of the City's Transport Network Using Game-Theoretic Methods on the Example of Petrozavodsk”, Contributions to Game Theory and Management, 15 (2022), 18–31 | DOI | MR
[10] Freeman L.C., “A set of measures of centrality based on betweenness”, Sociometry, 1 (1977), 35–41 | DOI
[11] Jackson M.O., Social and economic networks, Princeton University Press, 2008 | MR | Zbl
[12] Li Ju., Tur A., Zavrajnov M., “Importance of agents in networks: clique based game-theoretic approach”, Contributions to Game Theory and Management, 15 (2022), 189–199 | DOI | MR
[13] Mazalov V. Chirkova J., Networking Games, Academic Press, 2019 | Zbl
[14] Mazalov V.V., Khitraya V.A., “A modified Myerson value for determining the centrality of graph vertices”, Automation and Remote Control, 82:1 (2021), 145–159 | DOI | MR | Zbl
[15] Mazalov V.V., Trukhina L.I., “Generating functions and the myerson vector in communication networks”, Diskr. Mat., 26:3 (2014), 65–75 | DOI | MR | Zbl
[16] Michalak T.P., Aadithya K.V., Szczepanski P.L., Ravindran B., Jennings N.R., “Efficient computation of the Shapley value for game-theoretic network centrality”, J Artif. Intell. Res., 46 (2013), 607–650 | DOI | MR | Zbl
[17] Myerson R.B., “Graphs and cooperation in games”, Mathematics of Operations Research, 2:3 (1977), 225–229 | DOI | MR | Zbl
[18] Nieminen J., “On the centrality in a directed graph”, Social Science Research, 2:4 (1974), 371–378 | DOI
[19] Page L., Brin S., Motwani R., Winograd T., “The pagerank citation ranking: Bringing order to the Web”, Proceedings of the 7$^{\mathrm{th}}$ International World Wide Web Conference (Brisbane, Australia, 1998), 161–172 | MR
[20] Rochat Y., “Closeness centrality extended to unconnected graphs: The harmonic centrality index”, Proc. of the Applications of Social Network Analysis, ASNA 2009
[21] Sabidussi G., “The centrality index of a graph”, Psychometrika, 31 (1966), 581–603 | DOI | MR | Zbl
[22] Shaw M., “Communication networks”, Advances in Experimental Social Psychology, v. 1, 1954, 111–147
[23] Euler-Mascheroni Constant, Wolfram MathWorld, , 2023 https://mathworld.wolfram.com/Euler-MascheroniConstant.html