A coalitional differential game of vaccine producers
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 3, pp. 21-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposes a game-theoretic model of competition and cooperation of vaccine producers. Various versions of players' cooperation (partial and full) have been studied. The differential game has an infinite duration. For each possible coalition of players, the profits and production quantities of its members are determined. An stability analysis of possible coalition structures, as well as coalitions that are most attractive to customers has been made.
Keywords: differential game, Nash equilibrium, cooperative solution, stability.
Mots-clés : coalition structure
@article{MGTA_2023_15_3_a1,
     author = {Serigne M. Ndiaye and Elena M. Parilina},
     title = {A coalitional differential game of vaccine producers},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {21--40},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_3_a1/}
}
TY  - JOUR
AU  - Serigne M. Ndiaye
AU  - Elena M. Parilina
TI  - A coalitional differential game of vaccine producers
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2023
SP  - 21
EP  - 40
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2023_15_3_a1/
LA  - ru
ID  - MGTA_2023_15_3_a1
ER  - 
%0 Journal Article
%A Serigne M. Ndiaye
%A Elena M. Parilina
%T A coalitional differential game of vaccine producers
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2023
%P 21-40
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2023_15_3_a1/
%G ru
%F MGTA_2023_15_3_a1
Serigne M. Ndiaye; Elena M. Parilina. A coalitional differential game of vaccine producers. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 3, pp. 21-40. http://geodesic.mathdoc.fr/item/MGTA_2023_15_3_a1/

[1] Gusev V.V., Mazalov V.V., “Ustoichivye po Ouenu koalitsionnye razbieniya v igrakh s vektornymi platezhami”, Matematicheskaya teoriya igr i ee prilozheniya, 10:3 (2018), 3–23 | MR | Zbl

[2] Ndiaie S.M., Parilina E.M., “Epidemicheskaya model malyarii bez vaktsinatsii i pri ee nalichii. Ch. 2. Model malyarii s vaktsinatsiei”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 18:4 (2022), 555–567 | MR

[3] Aumann R.J., Dreze J.H., “Cooperative Games with Coalition Structures”, International Journal of Game Theory, 3:4 (1974), 217–237 | DOI | MR | Zbl

[4] Benchekroun H., Breton M., Chaudhuri A.R., “Mergers in nonrenewable resource oligopolies and environmental policies”, European Economic Review, 111 (2019), 35–52 | DOI

[5] Benchekroun H., Halsema A., Withagen C., “When additional resource stocks reduce welfare”, Journal of Environmental Economics and Management, 59:1 (2010), 109–114 | DOI | MR | Zbl

[6] Chander P., Tulkens H., “The Core of an Economy with Multilateral Environmental Externalities”, International Journal of Game Theory, 26 (1997), 379–401 | DOI | MR | Zbl

[7] Deissenberg C., Harti R. F., Optimal Control and Dynamic Games. Applications in Finance, Management Science and Economics, Springer, 368 pp. | Zbl

[8] Fanokoa P.S., Telahigue I., Zaccour G., “Buying cooperation in an asymmetric environmental differential game”, Journal of Economic Dynamics and Control, 35:6 (2011), 935–946 | DOI | MR | Zbl

[9] Gusev V.V., Mazalov V.V., “Potential functions for finding stable coalition structures”, Operations Research Letters, 47:6 (2019), 478–482 | DOI | MR | Zbl

[10] Parilina E., Sedakov A., “Stable Coalition Structures in Dynamic Competitive Environment”, International Series in Operations Research and Management Science, 2020, 381–385 | MR

[11] Parilina E., Sedakov A., “Stable Bank Cooperation for Cost Reduction Problem”, AUCO Czech Economic Review, 8:1 (2014), 7–25

[12] Sedakov A., Parilina E., Volobuev Y., Klimuk D., “Existence of Stable Coalition Structures in Three-person Games”, Contributions to Game Theory and Management, 6 (2013), 403–422 | MR

[13] Sun F., Parilina E., “Existence of Stable Coalition Structures in Four-person Games”, Contributions to Game Theory and Management, 11 (2018), 225–248 | MR