Police and robber game on infinite chessboard
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 3, pp. 3-20

Voir la notice de l'article provenant de la source Math-Net.Ru

It is considered two variants of the game "Policeman and a robber" on an infinite chessboard that is a graph giving a regular partition of the plane into squares. Heuristic and precise definitions of the concepts "the initial state is winning for the pursuer" and "the initial state is winning for the evader" are formulated. Then, criteria for determining if a given initial state is winning for the pursuer or for the evader is given.
Keywords: game on graphs, integere net, "Cops$\&$Robber" game, qualitative problem, pursuit problem, evading problem, strategy, alternative.
@article{MGTA_2023_15_3_a0,
     author = {Abdulla A. Azamov and Fatxull {\CYRA}. {\CYRK}uvatov and Hasan U. Tuyliyev},
     title = {Police and robber game on infinite chessboard},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_3_a0/}
}
TY  - JOUR
AU  - Abdulla A. Azamov
AU  - Fatxull А. Кuvatov
AU  - Hasan U. Tuyliyev
TI  - Police and robber game on infinite chessboard
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2023
SP  - 3
EP  - 20
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2023_15_3_a0/
LA  - ru
ID  - MGTA_2023_15_3_a0
ER  - 
%0 Journal Article
%A Abdulla A. Azamov
%A Fatxull А. Кuvatov
%A Hasan U. Tuyliyev
%T Police and robber game on infinite chessboard
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2023
%P 3-20
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2023_15_3_a0/
%G ru
%F MGTA_2023_15_3_a0
Abdulla A. Azamov; Fatxull А. Кuvatov; Hasan U. Tuyliyev. Police and robber game on infinite chessboard. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 3, pp. 3-20. http://geodesic.mathdoc.fr/item/MGTA_2023_15_3_a0/