Mots-clés : multicriteria games
@article{MGTA_2023_15_2_a4,
author = {Vladimir V. Mazalov and Anna N. Rettieva},
title = {Application of bargaining schemes for equilibrium determination in dynamic games},
journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
pages = {75--88},
year = {2023},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a4/}
}
TY - JOUR AU - Vladimir V. Mazalov AU - Anna N. Rettieva TI - Application of bargaining schemes for equilibrium determination in dynamic games JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2023 SP - 75 EP - 88 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a4/ LA - ru ID - MGTA_2023_15_2_a4 ER -
Vladimir V. Mazalov; Anna N. Rettieva. Application of bargaining schemes for equilibrium determination in dynamic games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 2, pp. 75-88. http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a4/
[1] Breton M., Keoula M.Y., “A great fish war model with asymmetric players”, Ecological Economics, 97 (2014), 209–223 | DOI
[2] Fisher R.D., Mirman L.J., “Strategic dynamic interactions: fish wars”, J. Economics Dynamics Control, 16 (1992), 267–287 | DOI
[3] Levhari D., Mirman L.J., “The great fish war: an example using a dynamic Cournot-Nash solution”, The Bell J. of Economics, 11:1 (1980), 322–334 | DOI | MR
[4] Marin-Solano J., “Group inefficiency in a common property resource game with asymmetric players”, Economics Letters, 136 (2015), 214–217 | DOI | MR | Zbl
[5] Mazalov V.V., Rettieva A.N., “Fish wars and cooperation maintenance”, Ecological Modelling, 221 (2010), 1545–1553 | DOI
[6] Mazalov V.V., Rettieva A.N., “Asymmetry in a cooperative bioresource management problem”: Game-Theoretic Models in Mathematical Ecology, Nova Science Publishers, 2015, 113–152 | MR | Zbl
[7] Nowak A., “A note on an equilibrium in the great fish war game”, Economics Bulletin, 17:2 (2006), 1–10
[8] Plourde C.G., Yeung D., “Harvesting of a transboundary replenishable fish stock: a noncooperative game solution”, Marine Resource Economics, 6 (1989), 57–70 | DOI
[9] Pusillo L., Tijs S., “E-equilibria for multicriteria games”, Annals of ISDG, 12 (2013), 217–228 | MR
[10] Rettieva A.N., “Multicriteria dynamic games”, International Game Theory Review, 19:1 (2017), 1750002 | DOI | MR | Zbl
[11] Rettieva A.N., “Dynamic multicriteria games with finite horizon”, Mathematics, 6 (2018), 156 | DOI | Zbl
[12] Rettieva A.N., “Dynamic multicriteria games with asymmetric players”, Journal of Global Optimization, 83 (2022), 521–537 | DOI | MR | Zbl
[13] Shapley L.S., “Equilibrium points in games with vector payoffs”, Naval Research Logistic Quarterly, 6 (1959), 57–61 | DOI | MR
[14] Sorger G., “Recursive Nash bargaining over a productive assert”, J. of Economic Dynamics Control, 30 (2006), 2637–2659 | DOI | MR | Zbl
[15] Voorneveld M., Grahn S., Dufwenberg M., “Ideal equilibria in noncooperative multicriteria games”, Mathematical Methods of Operations Research, 52 (2000), 65–77 | DOI | MR | Zbl