Application of bargaining schemes for equilibrium determination in dynamic games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 2, pp. 75-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

Cooperation plays an important role in dynamic games related to resource management problems. To construct the cooperative behavior in asymmetric (when players possess different discount factors) and multicriteria (when players have vector payoff functions) dynamic games the standard approaches are not applicable. The paper presents the methods based on bargaining schemes to determine the cooperative equilibria in such games. The cooperative strategies and payoffs in asymmetric dynamic games are obtained via the Nash bargaining scheme, while for the multicriteria dynamic games the modified bargaining schemes are applied. To illustrated the presented approaches, dynamic bioresource management problems (fish wars problem) with asymmetric players and vector payoff functions is investigated.
Keywords: dynamic games, asymmetric players, cooperative equilibrium, bargaining scheme.
Mots-clés : multicriteria games
@article{MGTA_2023_15_2_a4,
     author = {Vladimir V. Mazalov and Anna N. Rettieva},
     title = {Application of bargaining schemes for equilibrium determination in dynamic games},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {75--88},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a4/}
}
TY  - JOUR
AU  - Vladimir V. Mazalov
AU  - Anna N. Rettieva
TI  - Application of bargaining schemes for equilibrium determination in dynamic games
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2023
SP  - 75
EP  - 88
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a4/
LA  - ru
ID  - MGTA_2023_15_2_a4
ER  - 
%0 Journal Article
%A Vladimir V. Mazalov
%A Anna N. Rettieva
%T Application of bargaining schemes for equilibrium determination in dynamic games
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2023
%P 75-88
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a4/
%G ru
%F MGTA_2023_15_2_a4
Vladimir V. Mazalov; Anna N. Rettieva. Application of bargaining schemes for equilibrium determination in dynamic games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 2, pp. 75-88. http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a4/

[1] Breton M., Keoula M.Y., “A great fish war model with asymmetric players”, Ecological Economics, 97 (2014), 209–223 | DOI

[2] Fisher R.D., Mirman L.J., “Strategic dynamic interactions: fish wars”, J. Economics Dynamics Control, 16 (1992), 267–287 | DOI

[3] Levhari D., Mirman L.J., “The great fish war: an example using a dynamic Cournot-Nash solution”, The Bell J. of Economics, 11:1 (1980), 322–334 | DOI | MR

[4] Marin-Solano J., “Group inefficiency in a common property resource game with asymmetric players”, Economics Letters, 136 (2015), 214–217 | DOI | MR | Zbl

[5] Mazalov V.V., Rettieva A.N., “Fish wars and cooperation maintenance”, Ecological Modelling, 221 (2010), 1545–1553 | DOI

[6] Mazalov V.V., Rettieva A.N., “Asymmetry in a cooperative bioresource management problem”: Game-Theoretic Models in Mathematical Ecology, Nova Science Publishers, 2015, 113–152 | MR | Zbl

[7] Nowak A., “A note on an equilibrium in the great fish war game”, Economics Bulletin, 17:2 (2006), 1–10

[8] Plourde C.G., Yeung D., “Harvesting of a transboundary replenishable fish stock: a noncooperative game solution”, Marine Resource Economics, 6 (1989), 57–70 | DOI

[9] Pusillo L., Tijs S., “E-equilibria for multicriteria games”, Annals of ISDG, 12 (2013), 217–228 | MR

[10] Rettieva A.N., “Multicriteria dynamic games”, International Game Theory Review, 19:1 (2017), 1750002 | DOI | MR | Zbl

[11] Rettieva A.N., “Dynamic multicriteria games with finite horizon”, Mathematics, 6 (2018), 156 | DOI | Zbl

[12] Rettieva A.N., “Dynamic multicriteria games with asymmetric players”, Journal of Global Optimization, 83 (2022), 521–537 | DOI | MR | Zbl

[13] Shapley L.S., “Equilibrium points in games with vector payoffs”, Naval Research Logistic Quarterly, 6 (1959), 57–61 | DOI | MR

[14] Sorger G., “Recursive Nash bargaining over a productive assert”, J. of Economic Dynamics Control, 30 (2006), 2637–2659 | DOI | MR | Zbl

[15] Voorneveld M., Grahn S., Dufwenberg M., “Ideal equilibria in noncooperative multicriteria games”, Mathematical Methods of Operations Research, 52 (2000), 65–77 | DOI | MR | Zbl