Dynamic models of competition with~endogenous network formation
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 2, pp. 53-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

\selectlanguage{english} The paper examines dynamic network models of competition with endogenous network formation. While competing, member firms can communicate with each other through bilateral links, which in turn allow each firm to improve its profit. Link formation involves mutual agreement, but also additional costs. The competitive performance of firms is driven by the dynamics of their technological state. Open-loop Nash equilibria are found that determine the multi-component behavior of firms: production, investment, and network behavior.
Keywords: competition, investment, endogenous network, network game, Nash equilibrium.
@article{MGTA_2023_15_2_a3,
     author = {Vitalii A. Kochevadov and Artem A. Sedakov},
     title = {Dynamic models of competition with~endogenous network formation},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {53--74},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a3/}
}
TY  - JOUR
AU  - Vitalii A. Kochevadov
AU  - Artem A. Sedakov
TI  - Dynamic models of competition with~endogenous network formation
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2023
SP  - 53
EP  - 74
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a3/
LA  - ru
ID  - MGTA_2023_15_2_a3
ER  - 
%0 Journal Article
%A Vitalii A. Kochevadov
%A Artem A. Sedakov
%T Dynamic models of competition with~endogenous network formation
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2023
%P 53-74
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a3/
%G ru
%F MGTA_2023_15_2_a3
Vitalii A. Kochevadov; Artem A. Sedakov. Dynamic models of competition with~endogenous network formation. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 2, pp. 53-74. http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a3/

[1] Kochevadov V. A., Sedakov A. A., “Dinamicheskaya setevaya model proizvodstva s investirovaniem”, Vestnik Sankt-Peterburgskogo universiteta. Prikladnaya matematika. Informatika. Protsessy upravleniya, 19:1 (2023), 10–26 | MR

[2] Novikov D. A., “Igry i seti”, Matematicheskaya teoriya igr i ee prilozheniya, 2:1 (2010), 107–124 | MR | Zbl

[3] Petrosyan L. A., Zenkevich N. A., Shevkoplyas E. V., Teoriya igr, BKhV-Peterburg, SPb., 2012

[4] Başar T., Olsder G. J., Dynamic noncooperative game theory, Academic Press, London–New York, 1995 | MR | Zbl

[5] Cellini R., Lambertini L., “Dynamic R with spillovers: Competition vs cooperation”, Journal of Economic Dynamics Control, 33 (2009), 568–582 | DOI | MR | Zbl

[6] Galeotti A., et al., “Network games”, Review of Economic Studies, 77 (2010), 218–244 | DOI | MR | Zbl

[7] Goyal S., Moraga-González J. L., “R Networks”, The RAND Journal of Economics, 32 (2001), 686–707 | DOI

[8] Jackson M. O., Social and economic networks, Princeton University Press, Princeton, 2008 | MR | Zbl

[9] Jackson M. O., Zenou Y., “Games on networks”, Handbook of game theory with economic applications, v. 4, eds. Young P., Zamir S., Elsevier Science, Amsterdam, 2015, 95–164 | DOI | MR

[10] Vives X., “Strategic complementarity in multi-stage games”, Journal of Economic Theory, 40 (2009), 151–171 | DOI | MR | Zbl