Two epidemic models of malaria and their practical applications
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 2, pp. 33-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on data on the annual incidence of malaria in Senegal in the period from 2000 to 2021, the article demonstrates the possibilities of predicting the annual dynamics of the epidemic using the $SIR$ model and the $CIR$ model. A modified $SIR$ model with constant coefficients is constructed, and a description of the $CIR$ balance model with stochastic parameters is given. The question of the accuracy of forecasting the annual statistical indicators of the epidemic when using these models is investigated. As numerical experiments show, the average error in predicting the annual number of sick people compared to actual statistical data when using the $SIR$ model is quite large, while the $CIR$ model generates more accurate forecasts when compared.
Keywords: epidemic model of malaria, $SIR$ model, prediction of active cases of the disease, epidemic balance model, dynamic balance principle, $CIR$ model.
@article{MGTA_2023_15_2_a2,
     author = {Victor V. Zakharov and Serigne Modou Ndiaye},
     title = {Two epidemic models of malaria and their practical applications},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {33--52},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a2/}
}
TY  - JOUR
AU  - Victor V. Zakharov
AU  - Serigne Modou Ndiaye
TI  - Two epidemic models of malaria and their practical applications
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2023
SP  - 33
EP  - 52
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a2/
LA  - ru
ID  - MGTA_2023_15_2_a2
ER  - 
%0 Journal Article
%A Victor V. Zakharov
%A Serigne Modou Ndiaye
%T Two epidemic models of malaria and their practical applications
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2023
%P 33-52
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a2/
%G ru
%F MGTA_2023_15_2_a2
Victor V. Zakharov; Serigne Modou Ndiaye. Two epidemic models of malaria and their practical applications. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 2, pp. 33-52. http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a2/

[1] Zakharov V.V., Balykina Yu.E., “Balansovaya model epidemii COVID-19 na osnove protsentnogo prirosta”, Informatika i avtomatizatsiya, 20:5 (2021), 1034–1064

[2] Zakharov V. V., Balykina Yu. E., “Prognozirovanie dinamiki epidemii koronavirusa (COVID-19) na osnove metoda pretsedentov”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 16:3 (2020), 249–259

[3] Kondratev M. A., “Metody prognozirovaniya i modeli rasprostraneniya zabolevanii”, Kompyuternye issledovaniya i modelirovanie, 5:5 (2013), 863–882

[4] Ndiaie S. M., Parilina E. M., “Epidemicheskaya model malyarii bez vaktsinatsii i pri ee nalichii. Ch. 1. Model malyarii bez vaktsinatsii”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 18:2 (2022), 263–277 | MR

[5] Ndiaie S. M., Parilina E. M., “Epidemicheskaya model malyarii bez vaktsinatsii i pri ee nalichii. Ch. 2. Model malyarii s vaktsinatsiei”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 18:4 (2022), 554–566

[6] Cooper I., Mondal A. Antonopoulos C.G., “A SIR model assumption for the spread of COVID-19 in different communities”, Chaos Solitons Fractals, 139:110057 (2020) | MR

[7] Fanelli D., Piazza F., “Analysis and forecast of COVID-19 spreading in China, Italy and France”, Chaos Solitons Fractals, 134:109761 (2020) | MR

[8] Fred B., Carlos C., Zhilan F., Mathematical Models in Epidemiology, Springer, 2019 | MR | Zbl

[9] Fred B., Pauline V. D. D., Jianhong W., Mathematical Epidemiology, Springer-Verlag, Berlin–Heidelberg, 2008 | Zbl

[10] https://statsandr.com/blog/covid-19-in-belgium/#more-sophisticated-models

[11] Kermack W. O., McKendrick A. G., “Contribution to the Mathematical Theory of Epidemics”, The Royal Society. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 115:772 (1927), 700–721

[12] Layne S.P., Hyman J.M., Morens D.M., Taubenberger J.K., “New coronavirus outbreak: Framing questions for pandemic prevention”, Science Translational Medicine, 12:534 (2020), eabb1469 | DOI

[13] Linda J.S., Allen A., “A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis”, Infectious Disease Modelling, 2:2 (2017), 128–142 | DOI

[14] Mandal M., Jana S., Nandi S., Khatua A., Adak S., Kar T.K., “A model based study on the dynamics of COVID-19: Prediction and control”, Chaos Solitons Fractals, 136:109889 (2020) | MR | Zbl

[15] Nicholas F. B., Infectious Diseases, Essential Mathematical Biology, Springer-Verlag, London, 2003 | MR

[16] Otunuga O.M. Ogunsolu M.O., “Qualitative analysis of a stochastic SEITR epidemic model with multiple stages of infection and treatment”, Infectious Disease Modelling, 5 (2020), 61–90 | DOI | MR

[17] Schmidt R., Waligora T., “Influenza forecast: Case-based reasoning or statistics”, Lecture Notes in Computer Science, 4692, 2007, 287–294 | DOI

[18] Singh R.K., Rani M., Bhagavathula A.S., Sah R., Rodriguez-Morales A.J., Kalita H., Nanda C., Sharma S., Sharma Y.D., Rabaan A.A., “Prediction of the COVID-19 pandemic for the top 15 affected countries: Advanced autoregressive integratedmoving average (ARIMA) model”, JMIR Public Health Surveill, 6 (2020), 19115

[19] Wu J.T., Leung K., Leung G.M., “Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study”, Lancet, 395 (2020), 689–697 | DOI

[20] Zakharov V., Balykina Y., Ilin I., Tick A., “Forecasting a New Type of Virus Spread: A Case Study of COVID-19 with Stochastic Parameters”, Mathematics, 10 (2022), 3725 | DOI

[21] Zhang T., Ma Y., Xiao X., Lin Y., Zhang X., Yin F., Li X., “Dynamic bayesian network in infectious diseases surveillance: A simulation study”, Sci. Rep., 9:10376 (2019)