Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2023_15_2_a2, author = {Victor V. Zakharov and Serigne Modou Ndiaye}, title = {Two epidemic models of malaria and their practical applications}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {33--52}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a2/} }
TY - JOUR AU - Victor V. Zakharov AU - Serigne Modou Ndiaye TI - Two epidemic models of malaria and their practical applications JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2023 SP - 33 EP - 52 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a2/ LA - ru ID - MGTA_2023_15_2_a2 ER -
Victor V. Zakharov; Serigne Modou Ndiaye. Two epidemic models of malaria and their practical applications. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 2, pp. 33-52. http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a2/
[1] Zakharov V.V., Balykina Yu.E., “Balansovaya model epidemii COVID-19 na osnove protsentnogo prirosta”, Informatika i avtomatizatsiya, 20:5 (2021), 1034–1064
[2] Zakharov V. V., Balykina Yu. E., “Prognozirovanie dinamiki epidemii koronavirusa (COVID-19) na osnove metoda pretsedentov”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 16:3 (2020), 249–259
[3] Kondratev M. A., “Metody prognozirovaniya i modeli rasprostraneniya zabolevanii”, Kompyuternye issledovaniya i modelirovanie, 5:5 (2013), 863–882
[4] Ndiaie S. M., Parilina E. M., “Epidemicheskaya model malyarii bez vaktsinatsii i pri ee nalichii. Ch. 1. Model malyarii bez vaktsinatsii”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 18:2 (2022), 263–277 | MR
[5] Ndiaie S. M., Parilina E. M., “Epidemicheskaya model malyarii bez vaktsinatsii i pri ee nalichii. Ch. 2. Model malyarii s vaktsinatsiei”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 18:4 (2022), 554–566
[6] Cooper I., Mondal A. Antonopoulos C.G., “A SIR model assumption for the spread of COVID-19 in different communities”, Chaos Solitons Fractals, 139:110057 (2020) | MR
[7] Fanelli D., Piazza F., “Analysis and forecast of COVID-19 spreading in China, Italy and France”, Chaos Solitons Fractals, 134:109761 (2020) | MR
[8] Fred B., Carlos C., Zhilan F., Mathematical Models in Epidemiology, Springer, 2019 | MR | Zbl
[9] Fred B., Pauline V. D. D., Jianhong W., Mathematical Epidemiology, Springer-Verlag, Berlin–Heidelberg, 2008 | Zbl
[10] https://statsandr.com/blog/covid-19-in-belgium/#more-sophisticated-models
[11] Kermack W. O., McKendrick A. G., “Contribution to the Mathematical Theory of Epidemics”, The Royal Society. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 115:772 (1927), 700–721
[12] Layne S.P., Hyman J.M., Morens D.M., Taubenberger J.K., “New coronavirus outbreak: Framing questions for pandemic prevention”, Science Translational Medicine, 12:534 (2020), eabb1469 | DOI
[13] Linda J.S., Allen A., “A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis”, Infectious Disease Modelling, 2:2 (2017), 128–142 | DOI
[14] Mandal M., Jana S., Nandi S., Khatua A., Adak S., Kar T.K., “A model based study on the dynamics of COVID-19: Prediction and control”, Chaos Solitons Fractals, 136:109889 (2020) | MR | Zbl
[15] Nicholas F. B., Infectious Diseases, Essential Mathematical Biology, Springer-Verlag, London, 2003 | MR
[16] Otunuga O.M. Ogunsolu M.O., “Qualitative analysis of a stochastic SEITR epidemic model with multiple stages of infection and treatment”, Infectious Disease Modelling, 5 (2020), 61–90 | DOI | MR
[17] Schmidt R., Waligora T., “Influenza forecast: Case-based reasoning or statistics”, Lecture Notes in Computer Science, 4692, 2007, 287–294 | DOI
[18] Singh R.K., Rani M., Bhagavathula A.S., Sah R., Rodriguez-Morales A.J., Kalita H., Nanda C., Sharma S., Sharma Y.D., Rabaan A.A., “Prediction of the COVID-19 pandemic for the top 15 affected countries: Advanced autoregressive integratedmoving average (ARIMA) model”, JMIR Public Health Surveill, 6 (2020), 19115
[19] Wu J.T., Leung K., Leung G.M., “Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study”, Lancet, 395 (2020), 689–697 | DOI
[20] Zakharov V., Balykina Y., Ilin I., Tick A., “Forecasting a New Type of Virus Spread: A Case Study of COVID-19 with Stochastic Parameters”, Mathematics, 10 (2022), 3725 | DOI
[21] Zhang T., Ma Y., Xiao X., Lin Y., Zhang X., Yin F., Li X., “Dynamic bayesian network in infectious diseases surveillance: A simulation study”, Sci. Rep., 9:10376 (2019)