Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2023_15_2_a0, author = {Evgeniya V. Gasnikova and Alexander V. Gasnikov and Demyan V. Yarmoshik and Meruza B. Kubentayeva and Mikhail I. Persiianov and Irina V. Podlipnova and Ekaterina V. Kotlyarova and Ilya A. Sklonin and Elena D. Podobnaya and Vladislav V. Matyukhin}, title = {About multistage transportation model and sufficient conditions for its potentiality}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {3--17}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a0/} }
TY - JOUR AU - Evgeniya V. Gasnikova AU - Alexander V. Gasnikov AU - Demyan V. Yarmoshik AU - Meruza B. Kubentayeva AU - Mikhail I. Persiianov AU - Irina V. Podlipnova AU - Ekaterina V. Kotlyarova AU - Ilya A. Sklonin AU - Elena D. Podobnaya AU - Vladislav V. Matyukhin TI - About multistage transportation model and sufficient conditions for its potentiality JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2023 SP - 3 EP - 17 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a0/ LA - ru ID - MGTA_2023_15_2_a0 ER -
%0 Journal Article %A Evgeniya V. Gasnikova %A Alexander V. Gasnikov %A Demyan V. Yarmoshik %A Meruza B. Kubentayeva %A Mikhail I. Persiianov %A Irina V. Podlipnova %A Ekaterina V. Kotlyarova %A Ilya A. Sklonin %A Elena D. Podobnaya %A Vladislav V. Matyukhin %T About multistage transportation model and sufficient conditions for its potentiality %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2023 %P 3-17 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a0/ %G ru %F MGTA_2023_15_2_a0
Evgeniya V. Gasnikova; Alexander V. Gasnikov; Demyan V. Yarmoshik; Meruza B. Kubentayeva; Mikhail I. Persiianov; Irina V. Podlipnova; Ekaterina V. Kotlyarova; Ilya A. Sklonin; Elena D. Podobnaya; Vladislav V. Matyukhin. About multistage transportation model and sufficient conditions for its potentiality. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 2, pp. 3-17. http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a0/
[1] Vilson A.Dzh., Entropiinye metody modelirovaniya slozhnykh sistem, Nauka, M., 1978 | MR
[2] Gasnikov A.V., Klenov S.L., Nurminskii E.A., Kholodov Ya.A., Shamrai N.B., Vvedenie v matematicheskoe modelirovanie transportnykh potokov, ed. A.V. Gasnikov, MTsNMO, M., 2013
[3] Gasnikov A.V. i dr., “O trekhstadiinoi versii modeli statsionarnoi dinamiki transportnykh potokov”, Matematicheskoe modelirovanie, 26:6 (2014), 34–70 | Zbl
[4] Gasnikov A.V. i dr., “Evolyutsionnye vyvody entropiinoi modeli rascheta matritsy korrespondentsii”, Matematicheskoe modelirovanie, 28:4 (2016), 111–124 | MR | Zbl
[5] Gasnikov A.V., Gasnikova E.V., Modeli ravnovesnogo raspredeleniya potokov v bolshikh setyakh, MFTI, M., 2020
[6] Gasnikov A.V., Dvurechenskii P.E., Usmanova I.N., “O netrivialnosti bystrykh (uskorennykh) randomizirovannykh metodov”, Trudy Moskovskogo fiziko-tekhnicheskogo instituta, 8:2 (30) (2016), 67–100
[7] Gasnikov A.V., Nesterov Yu.E., “Universalnyi metod dlya zadach stokhasticheskoi kompozitnoi optimizatsii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 58:1 (2018), 51–68
[8] Ivanova A.S. i dr., “Kalibrovka parametrov modeli rascheta matritsy korrespondentsii dlya g. Moskvy”, COMPUTER, 12:5 (2020), 961–978
[9] Kotlyarova E.V. i dr., “Poisk ravnovesii v dvukhstadiinykh modelyakh raspredeleniya transportnykh potokov po seti”, Kompyuternye issledovaniya i modelirovanie, 13:2 (2021), 365–379
[10] Kotlyarova E.V. i dr., “Obosnovanie svyazi modeli Bekmana s vyrozhdayuschimisya funktsiyami zatrat s modelyu stabilnoi dinamiki”, Kompyuternye issledovaniya i modelirovanie, 14:2 (2022), 335–342
[11] Kubentaeva M.B., https://github.com/MeruzaKub/TransportNet | Zbl
[12] Mazalov V.V., Chirkova Yu.V., Setevye igry, Lan, 2022
[13] Shvetsov V.I., “Matematicheskoe modelirovanie transportnykh potokov”, Avtomatika i telemekhanika, 2003, no. 11, 3–46 | MR | Zbl
[14] Boyles S.D., Lownes N.E., Unnikrishnan A., Transportation network analysis, v. I, Static and Dynamic Traffic Assignment, 2020
[15] De Cea J., Fernandez J.E., Dekock V. and Soto A., “Solving network equilibrium problems on multimodal urban transportation networks with multiple user classes”, Transport Reviews, 25:3 (2005), 293–317 | DOI
[16] Dvurechensky P. et al., Primal-dual method for searching equilibrium in hierarchical congestion population games, arXiv: 1606.08988
[17] Dvurechensky P., Gasnikov A., Kroshnin A., Computational optimal transport: Complexity by accelerated gradient descent is better than by Sinkhorn's algorithm, arXiv: 1802.04367
[18] Dvurechensky P. et al., “A stable alternative to Sinkhorn's algorithm for regularized optimal transport”, International Conference on Mathematical Optimization Theory and Operations Research, Springer, Cham, 2020, 406–423 | DOI | MR | Zbl
[19] Evans S.P., “Derivation and analysis of some models for combining trip distribution and assignment”, Transportation Research, 10:1 (1976), 37–57 | DOI
[20] Gasnikova E. et al., “An evolutionary view on equilibrium models of transport flows”, Mathematics, 11:4 (2023), 858 | DOI
[21] Kamzolov D., Dvurechensky P., Gasnikov A., “Universal intermediate gradient method for convex problems with inexact oracle”, Optimization Methods and Software, 2020, 1–28 | MR
[22] Kroshnin A. et al., “On the complexity of approximating Wasserstein barycenters”, International conference on machine learning, PMLR, 2019, 3530–3540
[23] Kubentayeva M., Gasnikov A., Finding equilibria in the traffic assignment problem with primal-dual gradient methods for Stable Dynamics model and Beckmann model, arXiv: 2008.02418
[24] Nesterov Y., “Universal gradient methods for convex optimization problems”, Mathematical Programming, 152:1-2 (2015), 381–404 | DOI | MR | Zbl
[25] Nesterov Y. et al., “Primal-dual accelerated gradient methods with small-dimensional relaxation oracle”, Optimization Methods and Software, 2020, 1–38 | MR
[26] Nesterov Y., De Palma A., “Stationary dynamic solutions in congested transportation networks: summary and perspectives”, Networks and spatial economics, 3:3 (2003), 371–395 | DOI
[27] Ortuzar J.D., Willumsen L.G., Modelling transport, John Wiley and Sons, 2002
[28] Patriksson M., The traffic assignment problem: models and methods, Courier Dover Publications, 2015
[29] Peyre G., Cuturi M., “Computational Optimal Transport: With Applications to Data Science”, Foundations and Trends in Machine Learning, 11:5-6 (2019), 355–607 | DOI
[30] Sandholm W., Population games and evolutionary dynamics, MIT press, 2010 | MR | Zbl
[31] Stabler B., Bar-Gera H., Sall E., Transportation Networks for Research Core Team. Transportation Networks for Research, https://github.com/bstabler/TransportationNetworks