Equilibrium in sequre strategies as a development of the concept of Nash equilibrium
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 1, pp. 48-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

As its main goal, the paper defends the rationality of the concept of equilibrium in secure strategies (EinSS) and the organic proximity of the logic of this concept to the logic underlying the classical approach to solving game problems through Nash equilibrium. The article deals in detail with the system of EinSS definitions through the prism of the Nash equilibrium concept. On the basis of this analogy the connection between the existence of EinSS and the existence of Nash equilibrium is established.
Keywords: equilibrium in secure strategies, Nash equilibrium, competitive deviations, noncompetitive deviations, rationality theory, existence theorems.
@article{MGTA_2023_15_1_a1,
     author = {Mikhail B. Iskakov and Aleksei B. Iskakov},
     title = {Equilibrium in sequre strategies as a development of the concept of {Nash} equilibrium},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {48--72},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_1_a1/}
}
TY  - JOUR
AU  - Mikhail B. Iskakov
AU  - Aleksei B. Iskakov
TI  - Equilibrium in sequre strategies as a development of the concept of Nash equilibrium
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2023
SP  - 48
EP  - 72
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2023_15_1_a1/
LA  - ru
ID  - MGTA_2023_15_1_a1
ER  - 
%0 Journal Article
%A Mikhail B. Iskakov
%A Aleksei B. Iskakov
%T Equilibrium in sequre strategies as a development of the concept of Nash equilibrium
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2023
%P 48-72
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2023_15_1_a1/
%G ru
%F MGTA_2023_15_1_a1
Mikhail B. Iskakov; Aleksei B. Iskakov. Equilibrium in sequre strategies as a development of the concept of Nash equilibrium. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 1, pp. 48-72. http://geodesic.mathdoc.fr/item/MGTA_2023_15_1_a1/

[1] M.B. Iskakov, “Equilibrium in Safe Strategies”, Automation and Remote Control, 66:3 (2005), 465–478 | DOI | MR | Zbl

[2] Iskakov A.B., Iskakov M.B., “V poiskakh obobschennoi kontseptsii ratsionalnosti”, Zhurnal novoi ekonomicheskoi assotsiatsii, 2017, no. 2 (34), 181–189

[3] Korgin N.A., Intervyu s veduschim nauchnym sotrudnikom lab. 57, 2018 https://www.ipu.ru/press-center/43106

[4] Novikov D.A., “Modeli strategicheskoi refleksii”, Avtomatika i telemekhanika, 2012, no. 1, 3–23

[5] Novikov D.A., Chkhartishvili A.G., Refleksivnye igry, SINTEG, M., 2003

[6] Novikov D.A., Chkhartishvili A.G., Refleksiya i upravlenie: matematicheskie modeli, Izdatelstvo fiziko-matematicheskoi literatury, M., 2012

[7] Aumann R.J., Rule-Rationality versus Act-Rationality, Discussion Paper 497, Center for the Study of Rationality, The Hebrew University of Jerusalem, 2008

[8] Aumann R., Brandenburger A., “Epistemic Conditions for Nash Equilibrium”, Econometrica, 63:5 (1995), 1161–1180 | DOI | MR | Zbl

[9] Aumann R.J., Maschler M., “The bargaining set for cooperative games”, Advances in game theory, Ann. Math. Studies, Princeton Univ. Press, 1964, 443–476 | MR

[10] Bernheim D., “Rationalizable Strategic Behavior”, Econometrica, 52 (1984), 1007–1028 | DOI | MR | Zbl

[11] Camerer C.F., Ho T.-H., Chong J.-K., “Sophisticated Experience-Weighted Attraction Learning and Strategic Teaching in Repeated Games”, Journal of Economic Theory, 104:1 (2002), 137–188 | DOI | MR | Zbl

[12] Crawford V.P., Costa-Gomes M.A., Iriberri N., “Structural Models of Non-equilibrium Strategic Thinking: Theory, Evidence, and Applications”, Journal of Economic Literature, 51:1 (2013), 5–62 | DOI

[13] Crawford V.P., “Boundedly Rational versus Optimization-Based Models of Strategic Thinking and Learning in Games”, Journal of Economic Literature, 51:2 (2013), 512–527 | DOI

[14] Dasgupta P., Maskin E., “The existence of equilibrium in discontinuous economic games, I: Theory”, Rev. Econ. Stud., 53:1 (1986), 1–26 | DOI | MR | Zbl

[15] Dasgupta P., Maskin E., “The existence of equilibrium in discontinuous economic games, II: Applications”, Rev. Econ. Stud., 53:1 (1986), 27–41 | DOI | MR | Zbl

[16] Friedman J., “A non-cooperative equilibrium for supergames”, Review of Economic Studies, 38:1 (1971), 1–12 | DOI | Zbl

[17] Fudenberg D., Levine D., The Theory of Learning in Games, MIT Press, Cambridge, 1998 | MR | Zbl

[18] Harstad R., Selten R., “Bounded-Rationality Models: Tasks to Become Intellectually Competitive”, Journal of Economic Literature, 51:2 (2013), 496–511 | DOI

[19] Iskakov M., Iskakov A., d'Aspremont C., “Games for cautious players: the Equilibrium in Secure Strategies”, Games and Economic Behavior, 110 (2018), 58–70 | DOI | MR | Zbl

[20] Kahneman D., Tversky A., “Prospect Theory: An Analysis of Decision Under Risk”, Econometrica, 47:2 (1979), 263–291 | DOI | MR | Zbl

[21] Macy M.W., Flache A., “Learning Dynamics in Social Dilemmas”, Proceedings of the National Academy of Sciences, 99 (2002), 7229–7236 | DOI | Zbl

[22] McKelvey R.D., Palfrey T.R., “A Statistical Theory of Equilibrium in Games”, Japanese Economic Review, 47:2 (1996), 186–209 | DOI

[23] Milgrom P., Roberts J., “Adaptive and Sophisticated Learning in Normal Form Games”, Games and Economic Behavior, 3:1 (1991), 82–100 | DOI | MR | Zbl

[24] Müller W., Normann H.T., “Conjectural Variations and Evolutionary Stability: A Rationale for Consistency”, Journal of Institutional and Theoretical Economics, 161:3 (2005), 491–502 | DOI

[25] Nash J., “Non-Cooperative Games”, Annals of Mathematics, 54 (1951), 286–295 | DOI | MR | Zbl

[26] Neumann J., Morgenstern O., Theory of Games and Economic Behavior, Princeton University Press, Princeton, NJ, 1944 | MR | Zbl

[27] Pearce D., “Rationalizable Strategic Behavior and the Problem of Perfection”, Econometrica, 52 (1984), 1029–1050 | DOI | MR | Zbl

[28] Rabin M., “Incorporating Fairness into Game Theory and Economics”, American Economic Review, 83:5 (1993), 1281–1302

[29] Rubinstein A., Modeling Bounded Rationality, MIT Press, Cambridge, 1998

[30] Rubinstein A., “Modeling bounded rationality in economic theory: four examples”, Routledge handbook of bounded rationality, 2021, 423–436

[31] Samuelson P., Foundations of Economic Analysis, Harvard University Press, Cambridge, MA, 1947 | MR | Zbl

[32] Selton R., “Aspiration Adaptation Theory”, Journal of Mathematical Psychology, 42:2–3 (1998), 191–214 | DOI

[33] Simon H.A., “A Behavioral Model of Rational Choice”, The Quarterly Journal of Economics, 69 (1955), 99–118 | DOI

[34] Simon H.A., “Rational Choice and the Structure of the Environment”, Psychological Review, 63 (1956), 129–138 | DOI

[35] Smith J.M., Evolution and the Theory of Games, Cambridge University Press, Cambridge, 1982 | Zbl

[36] Viale R., Routledge handbook of bounded rationality, Routledge Taylor Francis Group, London–New York, 2021

[37] Wheeler G., “Bounded Rationality”, Stanford Encyclopedia of Philosophy, Summer 2020 Edition, The Metaphysics Research Lab, Center for the Study of Language and Information (CSLI), Stanford University, Stanford

[38] https://ru.wikipedia.org/wiki/Ogranichennaya_ratsionalnost