Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2023_15_1_a1, author = {Mikhail B. Iskakov and Aleksei B. Iskakov}, title = {Equilibrium in sequre strategies as a development of the concept of {Nash} equilibrium}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {48--72}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_1_a1/} }
TY - JOUR AU - Mikhail B. Iskakov AU - Aleksei B. Iskakov TI - Equilibrium in sequre strategies as a development of the concept of Nash equilibrium JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2023 SP - 48 EP - 72 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2023_15_1_a1/ LA - ru ID - MGTA_2023_15_1_a1 ER -
%0 Journal Article %A Mikhail B. Iskakov %A Aleksei B. Iskakov %T Equilibrium in sequre strategies as a development of the concept of Nash equilibrium %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2023 %P 48-72 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2023_15_1_a1/ %G ru %F MGTA_2023_15_1_a1
Mikhail B. Iskakov; Aleksei B. Iskakov. Equilibrium in sequre strategies as a development of the concept of Nash equilibrium. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 1, pp. 48-72. http://geodesic.mathdoc.fr/item/MGTA_2023_15_1_a1/
[1] M.B. Iskakov, “Equilibrium in Safe Strategies”, Automation and Remote Control, 66:3 (2005), 465–478 | DOI | MR | Zbl
[2] Iskakov A.B., Iskakov M.B., “V poiskakh obobschennoi kontseptsii ratsionalnosti”, Zhurnal novoi ekonomicheskoi assotsiatsii, 2017, no. 2 (34), 181–189
[3] Korgin N.A., Intervyu s veduschim nauchnym sotrudnikom lab. 57, 2018 https://www.ipu.ru/press-center/43106
[4] Novikov D.A., “Modeli strategicheskoi refleksii”, Avtomatika i telemekhanika, 2012, no. 1, 3–23
[5] Novikov D.A., Chkhartishvili A.G., Refleksivnye igry, SINTEG, M., 2003
[6] Novikov D.A., Chkhartishvili A.G., Refleksiya i upravlenie: matematicheskie modeli, Izdatelstvo fiziko-matematicheskoi literatury, M., 2012
[7] Aumann R.J., Rule-Rationality versus Act-Rationality, Discussion Paper 497, Center for the Study of Rationality, The Hebrew University of Jerusalem, 2008
[8] Aumann R., Brandenburger A., “Epistemic Conditions for Nash Equilibrium”, Econometrica, 63:5 (1995), 1161–1180 | DOI | MR | Zbl
[9] Aumann R.J., Maschler M., “The bargaining set for cooperative games”, Advances in game theory, Ann. Math. Studies, Princeton Univ. Press, 1964, 443–476 | MR
[10] Bernheim D., “Rationalizable Strategic Behavior”, Econometrica, 52 (1984), 1007–1028 | DOI | MR | Zbl
[11] Camerer C.F., Ho T.-H., Chong J.-K., “Sophisticated Experience-Weighted Attraction Learning and Strategic Teaching in Repeated Games”, Journal of Economic Theory, 104:1 (2002), 137–188 | DOI | MR | Zbl
[12] Crawford V.P., Costa-Gomes M.A., Iriberri N., “Structural Models of Non-equilibrium Strategic Thinking: Theory, Evidence, and Applications”, Journal of Economic Literature, 51:1 (2013), 5–62 | DOI
[13] Crawford V.P., “Boundedly Rational versus Optimization-Based Models of Strategic Thinking and Learning in Games”, Journal of Economic Literature, 51:2 (2013), 512–527 | DOI
[14] Dasgupta P., Maskin E., “The existence of equilibrium in discontinuous economic games, I: Theory”, Rev. Econ. Stud., 53:1 (1986), 1–26 | DOI | MR | Zbl
[15] Dasgupta P., Maskin E., “The existence of equilibrium in discontinuous economic games, II: Applications”, Rev. Econ. Stud., 53:1 (1986), 27–41 | DOI | MR | Zbl
[16] Friedman J., “A non-cooperative equilibrium for supergames”, Review of Economic Studies, 38:1 (1971), 1–12 | DOI | Zbl
[17] Fudenberg D., Levine D., The Theory of Learning in Games, MIT Press, Cambridge, 1998 | MR | Zbl
[18] Harstad R., Selten R., “Bounded-Rationality Models: Tasks to Become Intellectually Competitive”, Journal of Economic Literature, 51:2 (2013), 496–511 | DOI
[19] Iskakov M., Iskakov A., d'Aspremont C., “Games for cautious players: the Equilibrium in Secure Strategies”, Games and Economic Behavior, 110 (2018), 58–70 | DOI | MR | Zbl
[20] Kahneman D., Tversky A., “Prospect Theory: An Analysis of Decision Under Risk”, Econometrica, 47:2 (1979), 263–291 | DOI | MR | Zbl
[21] Macy M.W., Flache A., “Learning Dynamics in Social Dilemmas”, Proceedings of the National Academy of Sciences, 99 (2002), 7229–7236 | DOI | Zbl
[22] McKelvey R.D., Palfrey T.R., “A Statistical Theory of Equilibrium in Games”, Japanese Economic Review, 47:2 (1996), 186–209 | DOI
[23] Milgrom P., Roberts J., “Adaptive and Sophisticated Learning in Normal Form Games”, Games and Economic Behavior, 3:1 (1991), 82–100 | DOI | MR | Zbl
[24] Müller W., Normann H.T., “Conjectural Variations and Evolutionary Stability: A Rationale for Consistency”, Journal of Institutional and Theoretical Economics, 161:3 (2005), 491–502 | DOI
[25] Nash J., “Non-Cooperative Games”, Annals of Mathematics, 54 (1951), 286–295 | DOI | MR | Zbl
[26] Neumann J., Morgenstern O., Theory of Games and Economic Behavior, Princeton University Press, Princeton, NJ, 1944 | MR | Zbl
[27] Pearce D., “Rationalizable Strategic Behavior and the Problem of Perfection”, Econometrica, 52 (1984), 1029–1050 | DOI | MR | Zbl
[28] Rabin M., “Incorporating Fairness into Game Theory and Economics”, American Economic Review, 83:5 (1993), 1281–1302
[29] Rubinstein A., Modeling Bounded Rationality, MIT Press, Cambridge, 1998
[30] Rubinstein A., “Modeling bounded rationality in economic theory: four examples”, Routledge handbook of bounded rationality, 2021, 423–436
[31] Samuelson P., Foundations of Economic Analysis, Harvard University Press, Cambridge, MA, 1947 | MR | Zbl
[32] Selton R., “Aspiration Adaptation Theory”, Journal of Mathematical Psychology, 42:2–3 (1998), 191–214 | DOI
[33] Simon H.A., “A Behavioral Model of Rational Choice”, The Quarterly Journal of Economics, 69 (1955), 99–118 | DOI
[34] Simon H.A., “Rational Choice and the Structure of the Environment”, Psychological Review, 63 (1956), 129–138 | DOI
[35] Smith J.M., Evolution and the Theory of Games, Cambridge University Press, Cambridge, 1982 | Zbl
[36] Viale R., Routledge handbook of bounded rationality, Routledge Taylor Francis Group, London–New York, 2021
[37] Wheeler G., “Bounded Rationality”, Stanford Encyclopedia of Philosophy, Summer 2020 Edition, The Metaphysics Research Lab, Center for the Study of Language and Information (CSLI), Stanford University, Stanford
[38] https://ru.wikipedia.org/wiki/Ogranichennaya_ratsionalnost