Game-theoretic analysis of the interaction of economic agents in the Cournot oligopoly, taking into account the linear structure, the ''green'' effect and concern for fairness
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 1, pp. 3-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

A comparative analysis of the effectiveness of various ways of organizing economic agents is carried out, taking into account the structure and regulations of their interaction in the models of the Cournot oligopoly. Cournot oligopoly models in the form of a supply chain are constructed and analytically investigated, taking into account the "green" effect and concern for fairness. For symmetric models of Cournot oligopoly with different ways of organizing economic agents, the matching structures of social and individual preferences are analytically obtained. A numerical study of Cournot oligopoly models in various forms with asymmetric agents has been carried out, and the corresponding structures of social and individual preferences have been obtained.
Mots-clés : Cournot oligopoly
Keywords: supply chain, fairnessconcern, green effect, symmetrical and asymmetrical agents.
@article{MGTA_2023_15_1_a0,
     author = {Olga I. Gorbaneva and Gennady A. Ougolnitsky},
     title = {Game-theoretic analysis of the interaction of economic agents in the {Cournot} oligopoly, taking into account the linear structure, the ''green'' effect and concern for fairness},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--47},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_1_a0/}
}
TY  - JOUR
AU  - Olga I. Gorbaneva
AU  - Gennady A. Ougolnitsky
TI  - Game-theoretic analysis of the interaction of economic agents in the Cournot oligopoly, taking into account the linear structure, the ''green'' effect and concern for fairness
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2023
SP  - 3
EP  - 47
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2023_15_1_a0/
LA  - ru
ID  - MGTA_2023_15_1_a0
ER  - 
%0 Journal Article
%A Olga I. Gorbaneva
%A Gennady A. Ougolnitsky
%T Game-theoretic analysis of the interaction of economic agents in the Cournot oligopoly, taking into account the linear structure, the ''green'' effect and concern for fairness
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2023
%P 3-47
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2023_15_1_a0/
%G ru
%F MGTA_2023_15_1_a0
Olga I. Gorbaneva; Gennady A. Ougolnitsky. Game-theoretic analysis of the interaction of economic agents in the Cournot oligopoly, taking into account the linear structure, the ''green'' effect and concern for fairness. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 1, pp. 3-47. http://geodesic.mathdoc.fr/item/MGTA_2023_15_1_a0/

[1] N. Nisan, T. Roughgarden, E. Tardos, V. Vazirany (eds.), Algorithmic Game Theory, University Press, Cambridge, 2007 | MR | Zbl

[2] Azevedo S.G., Carvalho H., Machado V.C., “The influence of green practices on supply chain performance: A case study approach”, Transp. Res. Part E: Logist.Transp. Rev., 47:6 (2011), 850–871 | DOI

[3] Basar T., Olsder G.Y., Dynamic Non-Cooperative Game Theory, SIAM, 1999 | MR

[4] Burgess K., Singh P.J., Koroglu R., “Supply chain management: A structured literature review and implications for future research”, Int. J. Operat. Product. Manag., 26:7 (2006), 703–729 | DOI

[5] Cachon G.P., Netessine S., “Game theory in supply chain analysis”, Handbook of Quantitative Supply Chain Analysis: Modeling in the E-Business, eds. Simchi-Levi D., Wu S.D., Shen Z.M., Era Kluwer Academic Publishers, 2004 | Zbl

[6] Dubey P., “Inefficiency of Nash equilibria”, Math. Oper. Res., 11:1 (1986), 1–8 | DOI | MR | Zbl

[7] Estampe D., Supply Chains: Performance and Evaluation, Wiley, 2018

[8] Fahimnia B., Sarkis J., Davarzani H., “Green supply chain management: A review and bibliometric analysis”, Int. J. Product. Econ., 162 (2015), 101–114 | DOI

[9] Fehr E., Schmidt K.M., “A theory of fairness, competition, and cooperation”, Quart. J. Econ., 114:3 (1999), 817–868 | DOI | Zbl

[10] Fudenberg D., Tirole J., Game Theory, MIT Press, 2002 | MR

[11] Ivanov D., Dolgui A., “Viability of Intertwined Supply Networks: Extending the Supply Chain Resilience Angles towards Survivability. A Position Paper Motivated by COVID-19 Outbreak”, Int. J. of Production Research, 58:10 (2020), 2904–2915 | DOI

[12] Ivanov D., Sokolov B., Adaptive Supply Chain Management, Springer, 2010 | MR

[13] Johari R., Tsitsiklis J.N., “Efficiency loss in a network resource allocation game”, Math. Oper. Res., 29:3 (2004), 407–435 | DOI | MR | Zbl

[14] Jorgensen S., Zaccour G., Differential Games in Marketing, Kluwer Academic Publishers, 2004

[15] Govindan K., Kaliyan M., Kannan D., Haq A.N., “Barriers analysis for green supply chain management implementation in Indian industries using analytic hierarchy process”, Int. J. Product. Econ., 147 (2014), 555–568 | DOI | MR

[16] Gunasekaran A., Subramanian N., Rahman S., “Green supply chain collaboration and incentives: Current trends and future directions”, Transp. Res. E: Logist.Transp. Rev., 74 (2015), 1–10 | DOI

[17] Kannan D., Govindan K., Rajendran S., “Fuzzy axiomatic design approach based green supplier selection: A case study from Singapore”, J. Clean. Product., 96 (2015), 194–208 | DOI

[18] Katok E., Olsen T., Pavlov V., “Wholesale pricing under mild and privately known concerns for fairness”, Product. Operat. Manag., 23:2 (2014), 285–302 | DOI

[19] Katok E., Pavlov V., “Fairness in supply chain contracts: A laboratory study”, J. Operat. Manag., 31:3 (2013), 129–137 | DOI

[20] Mas-Colell A., Whinston M.D., Green J.R., Microeconomic Theory, Oxford University Press, 1995 | Zbl

[21] Moulin H., Theorie des jeux pour l'economie et la politique, Hermann, Paris, 1981

[22] Moulin H., Shenker S., “Strategy proof sharing of submodular costs: Budget balance versus efficiency”, Econ. Theory, 18:3 (2001), 511–533 | DOI | MR | Zbl

[23] Nagarajan M., Sosic G., “Game-theoretic analysis of cooperation among supply chain agents: Review and extensions”, Europ. J. Operat. Res., 187:3 (2008), 719–745 | DOI | MR | Zbl

[24] Narahari Y., Game Theory and Mechanism Design, World Scientific, 2014 | MR | Zbl

[25] Nie T., Du S., “Dual-fairness supply chain with quantity discount contracts”, Europ. J. Oper. Res., 258:2 (2017), 491–500 | DOI | MR | Zbl

[26] Osborne M. J., Rubinstein A., A Course in Game Theory, MIT Press, 1994 | MR | Zbl

[27] Papadimitriou C.H., “Algorithms, games, and the Internet”, Proc. 33rd Symp. Theory of Computing, 2001, 749–753 | DOI | MR | Zbl

[28] Roughgarden T., Selfish Routing and the Price of Anarchy, MIT Press, 2005

[29] Sarkis J., Zhu Q., Lai K.H., “An organizational theoretic review of green supply chain management literature”, Int. J. Product. Econ., 130:1 (2011), 1–15 | DOI

[30] Sharma A., Jain D., “Game-Theoretic Analysis of Green Supply Chain Under Cost-Sharing Contract with Fairness Concern”, Int. Game Theory Review, 23:2 (2021), 2050017 | DOI | MR | Zbl

[31] Sharma A., Nandi S., “A review of behavioral decision making in the newsvendor problem”, Operat. Supply Chain Management Int. J., 11:4 (2018), 200–213 | DOI

[32] Srivastava S.K., “Green supply-chain management: A state-of-the-art literature review”, Int. J. Manag. Rev., 9:1 (2007), 53–80 | DOI

[33] Tian Y., Govindan K., Zhu Q., “A system dynamics model based on evolutionary game theory for green supply chain management diffusion among Chinesemanufacturers”, J. Clean. Product., 80 (2014), 96–105 | DOI

[34] Vives X., Oligopoly Pricing: Old Ideas and New Tools, MIT Press, 1999

[35] Zhu Q., Cote R.P., “Integrating green supply chain management into an embryonic eco-industrial development: A case study of the Guitang group”, J. Clean. Product., 12:8–10 (2004), 1025–1035 | DOI

[36] Zhu Q., Geng Y., Fujita T., Hashimoto S., “Green supply chain management in leading manufacturers: Case studies in Japanese large companies”, Management Res. Rev., 33:4 (2010), 380–392 | DOI