Attack against layered defense
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 4, pp. 69-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

The "attack-defense" model is considered, in which the defense party at each point of defense has several lines and uses the target allocation of its forces. The problem of minimizing the mean quantity of attack forces breaking through the defense lines is solved in explicit formulae. Algorithm of finding a solution of the zero-sum damage game is developed.
Keywords: "attack-defense" model, target allocation, zero-sum game, optimal strategies, value of the game.
@article{MGTA_2022_14_4_a3,
     author = {Vladimir V. Morozov},
     title = {Attack against layered defense},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {69--80},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2022_14_4_a3/}
}
TY  - JOUR
AU  - Vladimir V. Morozov
TI  - Attack against layered defense
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2022
SP  - 69
EP  - 80
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2022_14_4_a3/
LA  - ru
ID  - MGTA_2022_14_4_a3
ER  - 
%0 Journal Article
%A Vladimir V. Morozov
%T Attack against layered defense
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2022
%P 69-80
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2022_14_4_a3/
%G ru
%F MGTA_2022_14_4_a3
Vladimir V. Morozov. Attack against layered defense. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 4, pp. 69-80. http://geodesic.mathdoc.fr/item/MGTA_2022_14_4_a3/

[1] Vasin A.A., Krasnoschekov P.S., Morozov V.V., Issledovanie operatsii, Izdatelskii tsentr «AKADEMIYa», M., 2008

[2] Vasin A.A., Morozov V.V., Teoriya igr i modeli matematicheskoi ekonomiki, MAKS-Press, M., 2008

[3] Germeier Yu.B., Vvedenie v teoriyu issledovaniya operatsii, Nauka, M., 1971

[4] Ogaryshev V.F., “Smeshannye strategii v odnom obobschenii zadachi Grossa”, Zhurn. vych. matem. i matem. fiz., 13:1 (1973), 59–70

[5] Perevozschikov A.G., Lesik I.A., “Prosteishaya model eshelonirovannoi protivozdushnoi oborony”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2013, no. 3, 83–94

[6] Acemoglu D., Malekian A., Ozdaglar A., “Network security and contagion”, Journal of Economic Theory, 166 (2016), 536–585

[7] Blackett D.W., “Some Blotto games”, Naval Research Logistic Quarterly, 1:1 (1954), 55–60

[8] Clark D.J., Konrad K.A., “Asymmetric conflict: Weakest link against best shot”, Journal of Conflict Resolution, 51:3 (2007), 457–469

[9] Gross O., Wagner R., A continuous colonel Blotto game, U.S. air force Project RAND, research memorandum – 408, 1950

[10] Haller H., Hoyer B., “The common enemy effect under strategic network formation and disruption”, Journal of Economic Behavior and Organization, 162 (2019), 146–163

[11] Kovenock D., Roberson B., “Coalitional Colonel Blotto Games With Application to the Economics of Alliances”, Journal of Public Economic Theory, 14:4 (2012), 653–676

[12] Kovenock D., Roberson B., “The Optimal Defense of Networks of Targets”, Economic Inquiry, 56:4 (2018), 2195–2211

[13] Powell R., “Defending against terrorist attacks with limited resources”, American Political Science Review, 101:3 (2007), 527–541