Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2022_14_4_a2, author = {Mikhail A. Gorelov}, title = {A model of a two-level hierarchical system with non-cooperative behavior of lower-level elements}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {45--68}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2022_14_4_a2/} }
TY - JOUR AU - Mikhail A. Gorelov TI - A model of a two-level hierarchical system with non-cooperative behavior of lower-level elements JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2022 SP - 45 EP - 68 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2022_14_4_a2/ LA - ru ID - MGTA_2022_14_4_a2 ER -
%0 Journal Article %A Mikhail A. Gorelov %T A model of a two-level hierarchical system with non-cooperative behavior of lower-level elements %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2022 %P 45-68 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2022_14_4_a2/ %G ru %F MGTA_2022_14_4_a2
Mikhail A. Gorelov. A model of a two-level hierarchical system with non-cooperative behavior of lower-level elements. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 4, pp. 45-68. http://geodesic.mathdoc.fr/item/MGTA_2022_14_4_a2/
[1] Burkov V.N., Novikov D.A., Teoriya aktivnykh sistem: sostoyanie i perspektivy, Sinteg, M., 1999
[2] Vasin A.A., Morozov V.V., Vvedenie v teoriyu igr s prilozheniyami k ekonomike, M., 2003
[3] Vatel I.A., Ereshko F.I., Matematika konflikta i sotrudnichestva, Znanie, M., 1973
[4] Germeier Yu.B., Vvedenie v teoriyu issledovaniya operatsii, Nauka, M., 1971
[5] Germeier Yu.B., Igry s neprotivopolozhnymi interesami, Nauka, M., 1976
[6] Germeier Yu.B., Moiseev N.N., “O nekotorykh zadachakh teorii ierarkhicheskikh sistem”, Problemy prikladnoi matematiki i mekhaniki, Nauka, M., 1971, 30–43
[7] Gorelik V.A., Kononenko A.F., Teoretiko-igrovye modeli prinyatiya reshenii v ekologo-ekonomicheskikh sistemakh, Radio i svyaz, M., 1982
[8] Gorelov M.A., “Maksimalnyi garantirovannyi rezultat v ierarkhicheskikh igrakh”, Upravlenie bolshimi sistemami, 67 (2017), 4–31
[9] Gorelov M.A., Nikiforov L.G., Sokolov V.P., “Auktsiony GKO: ravnovesnoe reshenie. Postroenie modeli i poisk optimalnykh strategii”, Rynok tsennykh bumag, 1997, no. 14, 21–24
[10] Gorelov M.A., Nikiforov L.G., Sokolov V.P. Auktsiony GKO: ravnovesnoe reshenie. Iskhodnye predpolozheniya i kachestvennye vyvody, Rynok tsennykh bumag, 1997, no. 15, 4–9
[11] Gorelov M.A., Nikiforov L.G., Sokolov V.P. Auktsiony GKO: ravnovesnoe reshenie. Kolichestvennye otsenki i mekhanizm realizatsii ravnovesiya, Rynok tsennykh bumag, 1997, no. 19, 22–28
[12] Kukushkin N.S., Morozov V.V., Teoriya neantagonisticheskikh igr, MGU, M., 1984
[13] Moiseev N.N., Elementy teorii optimalnykh sistem, Nauka, M., 1975
[14] Berge C., Espaces topologiques. Functions multivoques, Dunod, Paris, 1959
[15] Bolton P., Dewatripont M., Contract Theory, The MIT Press, Cambridge, 2004