A model of a two-level hierarchical system with non-cooperative behavior of lower-level elements
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 4, pp. 45-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the possible generalizations for the case of many persons of the classical hierarchical Germeier game is investigated. It is assumed that lower-level players tend to Nash equilibrium situations. The solution of the corresponding problem for games without feedback is given. An example is constructed demonstrating the fundamental difficulties encountered in the study of a game with feedback. A meaningful example is considered in which the proposed constructions adequately describe reality.
Keywords: hierarchical games, maximal guaranteed result, Nash equilibrium.
@article{MGTA_2022_14_4_a2,
     author = {Mikhail A. Gorelov},
     title = {A model of a two-level hierarchical system with non-cooperative behavior of lower-level elements},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {45--68},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2022_14_4_a2/}
}
TY  - JOUR
AU  - Mikhail A. Gorelov
TI  - A model of a two-level hierarchical system with non-cooperative behavior of lower-level elements
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2022
SP  - 45
EP  - 68
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2022_14_4_a2/
LA  - ru
ID  - MGTA_2022_14_4_a2
ER  - 
%0 Journal Article
%A Mikhail A. Gorelov
%T A model of a two-level hierarchical system with non-cooperative behavior of lower-level elements
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2022
%P 45-68
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2022_14_4_a2/
%G ru
%F MGTA_2022_14_4_a2
Mikhail A. Gorelov. A model of a two-level hierarchical system with non-cooperative behavior of lower-level elements. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 4, pp. 45-68. http://geodesic.mathdoc.fr/item/MGTA_2022_14_4_a2/

[1] Burkov V.N., Novikov D.A., Teoriya aktivnykh sistem: sostoyanie i perspektivy, Sinteg, M., 1999

[2] Vasin A.A., Morozov V.V., Vvedenie v teoriyu igr s prilozheniyami k ekonomike, M., 2003

[3] Vatel I.A., Ereshko F.I., Matematika konflikta i sotrudnichestva, Znanie, M., 1973

[4] Germeier Yu.B., Vvedenie v teoriyu issledovaniya operatsii, Nauka, M., 1971

[5] Germeier Yu.B., Igry s neprotivopolozhnymi interesami, Nauka, M., 1976

[6] Germeier Yu.B., Moiseev N.N., “O nekotorykh zadachakh teorii ierarkhicheskikh sistem”, Problemy prikladnoi matematiki i mekhaniki, Nauka, M., 1971, 30–43

[7] Gorelik V.A., Kononenko A.F., Teoretiko-igrovye modeli prinyatiya reshenii v ekologo-ekonomicheskikh sistemakh, Radio i svyaz, M., 1982

[8] Gorelov M.A., “Maksimalnyi garantirovannyi rezultat v ierarkhicheskikh igrakh”, Upravlenie bolshimi sistemami, 67 (2017), 4–31

[9] Gorelov M.A., Nikiforov L.G., Sokolov V.P., “Auktsiony GKO: ravnovesnoe reshenie. Postroenie modeli i poisk optimalnykh strategii”, Rynok tsennykh bumag, 1997, no. 14, 21–24

[10] Gorelov M.A., Nikiforov L.G., Sokolov V.P. Auktsiony GKO: ravnovesnoe reshenie. Iskhodnye predpolozheniya i kachestvennye vyvody, Rynok tsennykh bumag, 1997, no. 15, 4–9

[11] Gorelov M.A., Nikiforov L.G., Sokolov V.P. Auktsiony GKO: ravnovesnoe reshenie. Kolichestvennye otsenki i mekhanizm realizatsii ravnovesiya, Rynok tsennykh bumag, 1997, no. 19, 22–28

[12] Kukushkin N.S., Morozov V.V., Teoriya neantagonisticheskikh igr, MGU, M., 1984

[13] Moiseev N.N., Elementy teorii optimalnykh sistem, Nauka, M., 1975

[14] Berge C., Espaces topologiques. Functions multivoques, Dunod, Paris, 1959

[15] Bolton P., Dewatripont M., Contract Theory, The MIT Press, Cambridge, 2004