A class of game models with equilibrium, stable and pareto-optimal solutions
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 4, pp. 24-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposes game models with pay-off functions being convolutions by the operation of taking minimum of two criteria one of which describes competition of players in some common (external) sphere of activity and the other describes private achievements of each player (in internal sphere). Strategies of players are distributions of resources between external and internal spheres. The first criterion of each player depends on strategies of all players; the second depends only on the strategy of given player. It is shown that, under some natural assumptions of the monotonicity of the criteria, such $n$-person games are characterized by the fact that the Nash equilibrium exists, is strong, stable, and Pareto-optimal, and in two-person games in the Stackelberg equilibrium, the leader and the follower win no less than in the Nash equilibrium.
Keywords: pay-off functions, Stackelberg equilibrium, Nash equilibrium, external sphere, internal sphere.
Mots-clés : minimum convolutions
@article{MGTA_2022_14_4_a1,
     author = {Victor A. Gorelik and Tatiana V. Zolotova},
     title = {A class of game models with equilibrium, stable and pareto-optimal solutions},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {24--44},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2022_14_4_a1/}
}
TY  - JOUR
AU  - Victor A. Gorelik
AU  - Tatiana V. Zolotova
TI  - A class of game models with equilibrium, stable and pareto-optimal solutions
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2022
SP  - 24
EP  - 44
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2022_14_4_a1/
LA  - ru
ID  - MGTA_2022_14_4_a1
ER  - 
%0 Journal Article
%A Victor A. Gorelik
%A Tatiana V. Zolotova
%T A class of game models with equilibrium, stable and pareto-optimal solutions
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2022
%P 24-44
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2022_14_4_a1/
%G ru
%F MGTA_2022_14_4_a1
Victor A. Gorelik; Tatiana V. Zolotova. A class of game models with equilibrium, stable and pareto-optimal solutions. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 4, pp. 24-44. http://geodesic.mathdoc.fr/item/MGTA_2022_14_4_a1/

[1] Germeier Yu.B., Vatel I.A., “Igry s ierarkhicheskim vektorom interesov”, Izv. AN SSSR. Ser. Tekhnicheskaya kibernetika, 1974, no. 3, 54–69

[2] Gorelik V.A., Zolotova T.V., “Ierarkhicheskie igry s additivnymi funktsiyami vyigrysha, sochetayuschimi obschestvennye i lichnye interesy”, Matematicheskaya teoriya igr i ee prilozheniya, 13:4 (2021), 3–17

[3] Mulen E., Teoriya igr s primerami iz matematicheskoi ekonomiki, Mir, M., 1985

[4] Baliga S., Maskin E., “Mechanism design for the environment”, Handbook of Environmental Economics, v. 1, Elsevier, Amsterdam, 2003, 305–324

[5] Basar T., Olsder G.J., “Dynamic Noncooperative Game Theory”, The Society for Industrial Applied Mathematics, Academic Press, New York, 1999

[6] Dixit A.K., Nalebuff B.J., The Art of Strategy: A Game Theorist's Guide to Success in Business and Life, W.W. Norton Company, New York, 2010

[7] Fehr E., Gachter S., “Cooperation and punishment in public goods experiments”, Amer. Econ. Rev., 90:4 (2000), 980–994

[8] Groot N., Schutter B.D., Hellendoorn H., “On systematic computation of optimal nonlinear solutions for the reverse Stackelberg game”, IEEE Trans. Syst. Man Cybern.: Syst., 44:10 (2014), 1315–1327

[9] Groot N., Schutter B.D., Hellendoorn H., “Optimal affine leader functions in reverse Stackelberg games”, J. Optim. Theory Appl., 168:1 (2016), 348–374

[10] Hauert C., Holmes M., Doebeli M., “Evolutionary games and popu-lation dynamics: maintenance of cooperation in public goods games”, Proc. R. Soc. Lond. B Biol. Sci., 273:1600 (2006), 2565–2571

[11] Kukushkin N.S., “Strong Nash equilibrium in games with common and complementary local utilities”, Journal of Mathematical Economics, 68 (2017), 1–12

[12] Luo Z.Q., Pang J.S., Ralph D., Mathematical Programs with Equilibrium Constraints, Cambridge University Press, Cambridge, 1996

[13] Mu Y., Guo L., “Towards a theory of game-based non-equilibrium control systems”, J. Syst. Sci. Complex., 1:25 (2012), 209–226

[14] Mu Y., “Inverse Stackelberg Public Goods Game with multiple hierarchies under global and local information structures”, J. Optim. Theory Appl. Sci., 163:1 (2014), 332–350

[15] Olsder G.J., “Phenomena in inverse Stackleberg games, Part I: static problems”, J. Optim. Theory Appl., 143:3 (2009), 589–600

[16] Pang J.S., Fukushima M., “Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games”, Comput. Manag. Sci., 2:1 (2005), 21–56

[17] Sefton M., Shupp R., Walker J.M., “The effect of rewards and sanctions in provision of Public Good”, Econ. Inquiry, 45:4 (2007), 671–690

[18] Shen H., Basar T., “Incentive-based pricing for network games with complete and incomplete information”, Advances in Dynamic Game Theory, 2007, no. 9, 431–458

[19] Stackelberg H. Von, Market Structure and Equilibrium, Springer, Berlin, 2011

[20] Stankova K., Olsder G.J., Bliemer M.C.J., Bi-level optimal toll design problem solved by the inverse Stackelberg games approach, WIT Transactions on The Built Environment, 89, 2006

[21] Su C.L., Equilibrium Problems with Equilibrium Constraints: Stationarities, Algorithms and Applications, Ph.D. thesis, Stanford University, Stanford, 2005

[22] Ye J., Zhu D., “New necessary optimality conditions for bilevel programs by combining the MPEC and value function approaches”, SIAM J. Optim., 20:4 (2010), 1885–1905