Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2022_14_4_a1, author = {Victor A. Gorelik and Tatiana V. Zolotova}, title = {A class of game models with equilibrium, stable and pareto-optimal solutions}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {24--44}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2022_14_4_a1/} }
TY - JOUR AU - Victor A. Gorelik AU - Tatiana V. Zolotova TI - A class of game models with equilibrium, stable and pareto-optimal solutions JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2022 SP - 24 EP - 44 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2022_14_4_a1/ LA - ru ID - MGTA_2022_14_4_a1 ER -
%0 Journal Article %A Victor A. Gorelik %A Tatiana V. Zolotova %T A class of game models with equilibrium, stable and pareto-optimal solutions %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2022 %P 24-44 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2022_14_4_a1/ %G ru %F MGTA_2022_14_4_a1
Victor A. Gorelik; Tatiana V. Zolotova. A class of game models with equilibrium, stable and pareto-optimal solutions. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 4, pp. 24-44. http://geodesic.mathdoc.fr/item/MGTA_2022_14_4_a1/
[1] Germeier Yu.B., Vatel I.A., “Igry s ierarkhicheskim vektorom interesov”, Izv. AN SSSR. Ser. Tekhnicheskaya kibernetika, 1974, no. 3, 54–69
[2] Gorelik V.A., Zolotova T.V., “Ierarkhicheskie igry s additivnymi funktsiyami vyigrysha, sochetayuschimi obschestvennye i lichnye interesy”, Matematicheskaya teoriya igr i ee prilozheniya, 13:4 (2021), 3–17
[3] Mulen E., Teoriya igr s primerami iz matematicheskoi ekonomiki, Mir, M., 1985
[4] Baliga S., Maskin E., “Mechanism design for the environment”, Handbook of Environmental Economics, v. 1, Elsevier, Amsterdam, 2003, 305–324
[5] Basar T., Olsder G.J., “Dynamic Noncooperative Game Theory”, The Society for Industrial Applied Mathematics, Academic Press, New York, 1999
[6] Dixit A.K., Nalebuff B.J., The Art of Strategy: A Game Theorist's Guide to Success in Business and Life, W.W. Norton Company, New York, 2010
[7] Fehr E., Gachter S., “Cooperation and punishment in public goods experiments”, Amer. Econ. Rev., 90:4 (2000), 980–994
[8] Groot N., Schutter B.D., Hellendoorn H., “On systematic computation of optimal nonlinear solutions for the reverse Stackelberg game”, IEEE Trans. Syst. Man Cybern.: Syst., 44:10 (2014), 1315–1327
[9] Groot N., Schutter B.D., Hellendoorn H., “Optimal affine leader functions in reverse Stackelberg games”, J. Optim. Theory Appl., 168:1 (2016), 348–374
[10] Hauert C., Holmes M., Doebeli M., “Evolutionary games and popu-lation dynamics: maintenance of cooperation in public goods games”, Proc. R. Soc. Lond. B Biol. Sci., 273:1600 (2006), 2565–2571
[11] Kukushkin N.S., “Strong Nash equilibrium in games with common and complementary local utilities”, Journal of Mathematical Economics, 68 (2017), 1–12
[12] Luo Z.Q., Pang J.S., Ralph D., Mathematical Programs with Equilibrium Constraints, Cambridge University Press, Cambridge, 1996
[13] Mu Y., Guo L., “Towards a theory of game-based non-equilibrium control systems”, J. Syst. Sci. Complex., 1:25 (2012), 209–226
[14] Mu Y., “Inverse Stackelberg Public Goods Game with multiple hierarchies under global and local information structures”, J. Optim. Theory Appl. Sci., 163:1 (2014), 332–350
[15] Olsder G.J., “Phenomena in inverse Stackleberg games, Part I: static problems”, J. Optim. Theory Appl., 143:3 (2009), 589–600
[16] Pang J.S., Fukushima M., “Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games”, Comput. Manag. Sci., 2:1 (2005), 21–56
[17] Sefton M., Shupp R., Walker J.M., “The effect of rewards and sanctions in provision of Public Good”, Econ. Inquiry, 45:4 (2007), 671–690
[18] Shen H., Basar T., “Incentive-based pricing for network games with complete and incomplete information”, Advances in Dynamic Game Theory, 2007, no. 9, 431–458
[19] Stackelberg H. Von, Market Structure and Equilibrium, Springer, Berlin, 2011
[20] Stankova K., Olsder G.J., Bliemer M.C.J., Bi-level optimal toll design problem solved by the inverse Stackelberg games approach, WIT Transactions on The Built Environment, 89, 2006
[21] Su C.L., Equilibrium Problems with Equilibrium Constraints: Stationarities, Algorithms and Applications, Ph.D. thesis, Stanford University, Stanford, 2005
[22] Ye J., Zhu D., “New necessary optimality conditions for bilevel programs by combining the MPEC and value function approaches”, SIAM J. Optim., 20:4 (2010), 1885–1905