Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2022_14_3_a4, author = {Alexandra N. Yakusheva}, title = {Nontransitive dice with equal means and variances}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {101--120}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a4/} }
Alexandra N. Yakusheva. Nontransitive dice with equal means and variances. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 3, pp. 101-120. http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a4/
[1] Bulinskaya E.V., Teoriya riska i perestrakhovanie, OOO «Meiler», M., 2008
[2] Gnedenko B.V., Kovalenko I.N., Vvedenie v teoriyu massovogo obsluzhivaniya, Nauka, M., 1987 | MR
[3] Gorbunova A.V., Lebedev A.V., “Effekty stokhasticheskoi netranzitivnosti v sistemakh massovogo obsluzhivaniya”, Upravlenie bolshimi sistemami, 85 (2020), 23–50 | MR
[4] Lebedev A.V., “Problema netranzitivnosti dlya trekh nepreryvnykh sluchainykh velichin”, Avtomatika i telemekhanika, 2019, no. 6, 91–103 | Zbl
[5] Permogorskii M.S., “Netranzitivnost konkurentnykh otnoshenii vidov v bioticheskikh soobschestvakh”, Zhurnal obschei biologii, 75:3 (2014), 226–233
[6] Poddyakov A.N., “Printsip netranzitivnosti prevoskhodstva v raznykh paradigmakh”, Voprosy psikhologii, 2019, no. 2, 3–16
[7] Shiryaev A.N., Osnovy stokhasticheskoi finansovoi matematiki, Fazis, M., 1998
[8] Gardner M., “The paradox of the nontransitive dice and the elusive principle of indifference”, Sci. Amer., 223:6 (1970), 110–114 | DOI
[9] Gardner M., “On the paradoxical situations that arise from nontransitive relations”, Sci. Amer., 231:6 (1974), 120–125 | DOI
[10] Gorbunova A.V., Lebedev A.V., “Nontransitivity of tuples of random variables with polynomial density and its effects in Bayesian models”, Mathematics and Computers in Simulation, 202 (2022), 181–192 | DOI | MR | Zbl
[11] Grime J., “The bizarre world of nontransitive dice: games for two or more players”, College Mathematics Journal, 48:1 (2017), 2–9 | DOI | MR | Zbl
[12] Trybula S., “On the paradox of three random variables”, Zastos. Matem., 5:4 (1961), 321–332 | MR
[13] Conrey B., Gabbard J., Grant K., Liu A., Morrison K., “Intransitive Dice”, Mathematics Magazine, 89:2 (2016), 133–143 | DOI | MR | Zbl