Nontransitive dice with equal means and variances
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 3, pp. 101-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

This study aims to investigate the nontransitivity of the stochastic precedence relation. The dice were taken as an example of discrete random variables with a finite set of values. The means and variances of the dice were assumed those of the classical dice. The whole variety of nontransitive sets containing three or four dice were found in case of one or two tosses and various ways to determine the advantage. The sets that reveal the strongest property of nontransitivity were obtained according to the specific function. The hypothesis has been tested about the emergence of non-transitivity after two tosses of dice in originally transitive sets.
Keywords: nontransitivity, nontransitive dice, stochastic precedence
Mots-clés : discrete random variables.
@article{MGTA_2022_14_3_a4,
     author = {Alexandra N. Yakusheva},
     title = {Nontransitive dice with equal means and variances},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {101--120},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a4/}
}
TY  - JOUR
AU  - Alexandra N. Yakusheva
TI  - Nontransitive dice with equal means and variances
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2022
SP  - 101
EP  - 120
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a4/
LA  - ru
ID  - MGTA_2022_14_3_a4
ER  - 
%0 Journal Article
%A Alexandra N. Yakusheva
%T Nontransitive dice with equal means and variances
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2022
%P 101-120
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a4/
%G ru
%F MGTA_2022_14_3_a4
Alexandra N. Yakusheva. Nontransitive dice with equal means and variances. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 3, pp. 101-120. http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a4/

[1] Bulinskaya E.V., Teoriya riska i perestrakhovanie, OOO «Meiler», M., 2008

[2] Gnedenko B.V., Kovalenko I.N., Vvedenie v teoriyu massovogo obsluzhivaniya, Nauka, M., 1987 | MR

[3] Gorbunova A.V., Lebedev A.V., “Effekty stokhasticheskoi netranzitivnosti v sistemakh massovogo obsluzhivaniya”, Upravlenie bolshimi sistemami, 85 (2020), 23–50 | MR

[4] Lebedev A.V., “Problema netranzitivnosti dlya trekh nepreryvnykh sluchainykh velichin”, Avtomatika i telemekhanika, 2019, no. 6, 91–103 | Zbl

[5] Permogorskii M.S., “Netranzitivnost konkurentnykh otnoshenii vidov v bioticheskikh soobschestvakh”, Zhurnal obschei biologii, 75:3 (2014), 226–233

[6] Poddyakov A.N., “Printsip netranzitivnosti prevoskhodstva v raznykh paradigmakh”, Voprosy psikhologii, 2019, no. 2, 3–16

[7] Shiryaev A.N., Osnovy stokhasticheskoi finansovoi matematiki, Fazis, M., 1998

[8] Gardner M., “The paradox of the nontransitive dice and the elusive principle of indifference”, Sci. Amer., 223:6 (1970), 110–114 | DOI

[9] Gardner M., “On the paradoxical situations that arise from nontransitive relations”, Sci. Amer., 231:6 (1974), 120–125 | DOI

[10] Gorbunova A.V., Lebedev A.V., “Nontransitivity of tuples of random variables with polynomial density and its effects in Bayesian models”, Mathematics and Computers in Simulation, 202 (2022), 181–192 | DOI | MR | Zbl

[11] Grime J., “The bizarre world of nontransitive dice: games for two or more players”, College Mathematics Journal, 48:1 (2017), 2–9 | DOI | MR | Zbl

[12] Trybula S., “On the paradox of three random variables”, Zastos. Matem., 5:4 (1961), 321–332 | MR

[13] Conrey B., Gabbard J., Grant K., Liu A., Morrison K., “Intransitive Dice”, Mathematics Magazine, 89:2 (2016), 133–143 | DOI | MR | Zbl