Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2022_14_3_a3, author = {Alexander N. Poddiakov}, title = {Intransitively winning chess players' positions}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {75--100}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a3/} }
Alexander N. Poddiakov. Intransitively winning chess players' positions. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 3, pp. 75-100. http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a3/
[1] Bogdanov I.I., “Netranzitivnye ruletki”, Matematicheskoe prosveschenie. Cer. 3, 14, 2010, 240–255
[2] Vasyukova E.E., “Evristiki myshleniya”, Psikhologiya kognitivnykh protsessov, 2020, no. 9, 129–142
[3] Gardner M., Krestiki-noliki, Mir, M., 1988 | MR
[4] Gardner M., Puteshestvie vo vremeni, Mir, M., 1990 | MR
[5] Gorbunova A.V., Lebedev A.V., “Effekty stokhasticheskoi netranzitivnosti v sistemakh massovogo obsluzhivaniya”, Upravlenie bolshimi sistemami, 85 (2020), 23–50 | MR
[6] Ilkov L., “Paradoksy komandnykh sorevnovanii”, Kvant, 2009, no. 1, 44–46
[7] Kasparov G., Chelovek i kompyuter. Vzglyad v buduschee, Alpina Pablisher, M., 2018
[8] Kolchin V.F., “Igr teoriya”, Bolshaya Rossiiskaya entsiklopediya https://bigenc.ru/mathematics/text/1999808
[9] Lebedev A.V., “Problema netranzitivnosti dlya trekh nepreryvnykh sluchainykh velichin”, Avtomatika i telemekhanika, 2019, no. 6, 91–103 | Zbl
[10] Levidov M.Yu., Steinits, Lasker, Russian Chess house, M., 2008
[11] Poddyakov A.N., “Netranzitivnost prevoskhodstva i ee ispolzovanie dlya obmana i trenirovki myshleniya”, Psikhologo-ekonomicheskie issledovaniya, 3:4 (2016), 43–50
[12] Poddyakov A.N., “Paket kompyuternykh igr dlya izucheniya i formirovaniya kombinatornogo logicheskogo myshleniya detei”, Poznanie. Obschestvo. Razvitie, ed. D.V. Ushakov, In-t psikhologii RAN, M., 1996, 126–135
[13] Poddyakov A.N., “Printsip netranzitivnosti prevoskhodstva v raznykh paradigmakh”, Voprosy psikhologii, 2019, no. 2, 3–16
[14] Popov G.L., Netranzitivnost – kladez dlya shakhmatnykh kompozitorov, 2021 http://superproblem.ru/doc/columns/expert/2021/Non-transitivity.pdf
[15] Filatov A.Yu., “Netranzitivnye pozitsii v shakhmatakh”, Nauka i zhizn, 2017, no. 7, 117–120
[16] Sheinerman E., Putevoditel dlya vlyublennykh v matematiku, Alpina non-fikshn, M., 2018
[17] Shteingauz G., Zadachi i razmyshleniya, Mir, M., 1974
[18] Akin E., “Generalized intransitive dice: mimicking an arbitrary tournament”, Journal of dynamics and games, 8:1 (2019), 1–20 | DOI | MR
[19] Atkinson G., Chess and Machine Intuition, IntellectTM, Exeter, 1998
[20] Beardon T., Transitivity http://nrich.maths.org/1345
[21] Bednay D., Bozoki S., “Constructions for nontransitive dice sets”, Proceedings of the 8th Japanese-Hungarian Symposium on Discrete Mathematics and its Applications (Veszprem, Hungary, June 4-7, 2013), 15–23
[22] Bozoki S., “Nontransitive dice sets realizing the Paley tournaments for solving Schutte's tournament problem”, Miskolc Mathematical Notes, 15:1 (2014), 39–50 | DOI | MR | Zbl
[23] Buhler J., Graham R., Hales A., “Maximally nontransitive dice”, American Mathematical Monthly, 125:5 (2018), 387–399 | DOI | MR | Zbl
[24] Conrey B., Gabbard J., Grant K., Liu A., Morrison K., “Intransitive dice”, Mathematics Magazine, 89:2 (2016), 133–143 | DOI | MR | Zbl
[25] Csakany B., “A form of the Zermelo-von Neumann theorem under minimal assumptions”, Acta Cybernetica, 15 (2002), 321–325 | MR | Zbl
[26] Frequently asked questions - and their answers https://www.figg.org/old_figg/www.figg.org/varie/faq.txt
[27] Fishburn P.C., “Nontransitive preferences in decision theory”, Journal of risk and uncertainty, 1991, no. 4, 113–134 | DOI | Zbl
[28] Gardner M., “The paradox of the nontransitive dice and the elusive principle of indifference”, Scientific American, 223 (1970), 110–114 | DOI | MR
[29] Gardner M., “On the paradoxical situations that arise from nontransitive relations”, Scientific American, 231 (1974), 120–125 | DOI
[30] Grime J., “The bizarre world of nontransitive dice: games for two or more players”, The College Mathematics Journal, 48:1 (2017), 2–9 | DOI | MR | Zbl
[31] Hulko A., Whitmeyer M.A., “Game of nontransitive dice”, Mathematics Magazine, 92:5 (2019), 368–373 | DOI | MR | Zbl
[32] Lake R., Schaeffer J., Lu P., Solving large retrograde analysis problems using a network of workstations, 1993 https://webdocs.cs.ualberta.ca/ ̃ jonathan/publications/ai_publications/databases.pdf
[33] Peterson C., The effect of endgame tablebases on modern chess engines, California Polytechnic State University, San Luis Obispo, 2018
[34] Schaeffer J., Burch N., Bjornsson Y., Kishimoto A., Muller M., Lake R., Luand P., Sutphen S., “Checkers is solved”, Science, 317:5844 (2007), 1518–1522 | DOI | MR | Zbl
[35] Strogatz S. H., Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, Westview Press, Boulder, CO, 2015 | MR | Zbl
[36] Sturtevant N. R., “Challenges and progress on using large lossy endgame databases in Chinese Checkers”, Computer Games, CGW 2015, GIGA 2015, Communications in Computer and Information Science, 614, eds. Cazenave T. et al., 2015, 3–15 | DOI
[37] Trybula S., “On the paradox of three random variables”, Applicationes Mathematicae, 5:4 (1961), 321–332 | DOI | MR
[38] Unzueta D., AlphaGo: How AI mastered the game of Go https://towardsdatascience.com/alphago-how-ai-mastered-the-game-of-go-b1355937c98d
[39] Weisstein E.W., Pathological, MathWorld – A Wolfram Web Resource https://mathworld.wolfram.com/Pathological.html
[40] West L.J., Hankin R., “Exact tests for two-way contingency tables with structural zeros”, Journal of statistical software, 28:11 (2008), 1–19 | DOI