Two-stage game-theoretic model of inspection and embezzlement in a three-level control system
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 3, pp. 45-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

The subhierarchical two-stage game-theoretic model of embezzlement and bribery is designed, the particular example based on the scheme with six officials on three levels is solved. Theoretic conditions and numerical corruption minimization settings are suggested. The cooperative extension is proposed and the computer simulation is carried out for two different approaches to the isolated components, the results analyzed for stability.
Mots-clés : corruption, inspection, core
Keywords: embezzlement, hierarchical game, bribery, cooperative games, Myerson value.
@article{MGTA_2022_14_3_a2,
     author = {Suriya Sh. Kumacheva and Ivan M. Orlov},
     title = {Two-stage game-theoretic model of inspection and embezzlement in a three-level control system},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {45--74},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a2/}
}
TY  - JOUR
AU  - Suriya Sh. Kumacheva
AU  - Ivan M. Orlov
TI  - Two-stage game-theoretic model of inspection and embezzlement in a three-level control system
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2022
SP  - 45
EP  - 74
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a2/
LA  - ru
ID  - MGTA_2022_14_3_a2
ER  - 
%0 Journal Article
%A Suriya Sh. Kumacheva
%A Ivan M. Orlov
%T Two-stage game-theoretic model of inspection and embezzlement in a three-level control system
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2022
%P 45-74
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a2/
%G ru
%F MGTA_2022_14_3_a2
Suriya Sh. Kumacheva; Ivan M. Orlov. Two-stage game-theoretic model of inspection and embezzlement in a three-level control system. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 3, pp. 45-74. http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a2/

[1] Vasin A. A., Kartunova P. A., Urazov A. S., “Modeli organizatsii gosudarstvennykh inspektsii i borby s korruptsiei”, Matem. modelirovanie, 2010, no. 22, 67–89 | Zbl

[2] Gorbaneva O.I., Ugolnitskii G.A., “Tsena anarkhii i mekhanizmy upravleniya v modelyakh soglasovaniya obschestvennykh i chastnykh interesov”, Matematicheskaya teoriya igr i ee prilozheniya, 2015, no. 7, 50–73 | MR | Zbl

[3] Gorbaneva O.I., Usov A.B., Ugolnitskii G.A. Modeli korruptsii v ierarkhicheskikh sistemakh upravleniya, Problemy upravleniya, 2015, no. 1, 2–10 | MR

[4] Gorbaneva O.I., “Korruptsionnye mekhanizmy v modelyakh sochetaniya obschikh i chastnykh interesov v sluchae odnogo agenta. Optimizatsionnyi podkhod”, Matematicheskaya teoriya igr i ee prilozheniya, 2020, no. 12, 36–62 | MR | Zbl

[5] Orlov I.M., “Primer resheniya korruptsionnoi igry s ierarkhicheskoi skhemoi”, Protsessy uprovleniya i ustoichivost, 2020, no. 1, 402–407

[6] Orlov I.M., Kumacheva S.Sh., “Ierarkhicheskaya model korruptsii: teoretiko-igrovoi podkhod”, Sbornik «Matematicheskaya teoriya upravleniya i ee prilozheniya (MTUIP-2020)», 2020, 269–271

[7] Mazalov V.V., Matematicheskaya teoriya igr i prilozheniya, Uchebnoe posobie, Lan, Sankt-Peterburg, 2016

[8] Petrosyan L.A., Zenkevich N.A., Shevkoplyas E.V., Teoriya igr, BKhV-Peterburg, Sankt-Peterburg, 2012

[9] Savvateev A.V., Modelirovanie korruptsii i lobbirovaniya v perekhodnykh ekonomikakh, Dis. kand. ekon. nauk: 08.00.13, M., 2003, 114 pp. (RGB OD, 61:03-8/2759-6) | Zbl

[10] Attanasi G., Rimbaud C., Villeval M., Embezzlement and guilt aversion, IZA Discussion Papers No 11956, 2016

[11] Caulier J.-F., Skoda A., Tanimura E., “Allocation Rules for Networks Inspired by Cooperative Game-Theory”, Revue d'ecomie politique, 2017

[12] Gorbaneva O.I., Usov A.B., Ougolnitsky G.A., “Mechanisms of struggle with corruption in dynamic social and private interests coordination engine models”, Contributions to Game Theory and Management, 12 (2019), 140–150 | MR

[13] Halko M-L., Seppala T., Ultimatum game experiments, Discussion papers of Helsinki Center of Economic Research No 140, 2006

[14] Ramsay K., Signorino C., A Statistical Model of the Ultimatum Game, Working Papers, 2009

[15] Kumacheva S. Sh., “The Strategy of Tax Control in Conditions of Possible Mistakes and Corruption of Inspectors”, Contributions to Game Theory and Management, 6 (2013), 264–273 | MR

[16] Orlov I., Kumacheva S., “Hierarchical Model of Corruption: Game-Theoretic Approach”, Frontiers of Dynamic Games: Game Theory and Management, 2020 (to appear) | MR

[17] Shenje T., “Investigating the mechanism of corruption and bribery behavior: a game-theoretical methodology”, Dynamic Research Journals. Journal of Economics and Finance, 1 (2016), 1–6

[18] Song Y., Zhu M., Wang H., “Game-theoretic approach for anti-corruption policy between investigating committee and inspected departments in China”, International Conference on Applied Mathematics, Simulation and Modelling, 2016, 452–455

[19] Spengler D., Detection and Deterrence in the Economics of Corruption: a Game Theoretic Analysis and some Experimental Evidence, University of York, York, 2014

[20] Vasin A., Panova E., Tax Collection and Corruption in Fiscal Bodies, Economics Education and Research Consortium Working Paper Series, No 99/10, 2000

[21] Zyglidopoulos S., Dieleman M., Hirsch P., “Playing the Game: Unpacking the Rationale for Organizational Corruption in MNCs”, Journal of Management Inquiry, 29 (2019), 338–349 | DOI