Design of the feasible region for demand values in a congested urban road network
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 3, pp. 22-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is devoted to the study of the feasible region for demand values in a congested urban road network. Travel demand estimation is considered to be the inverse of the traffic assignment problem, formulated as a congestion game. We show that the corresponding estimation problem has the form of a bilevel optimization program with a weak-defined feasible set of upper-level solution variables (even a trivial solution leads to the global optimum). However, we are lucky to prove that for any congested urban road network there is a polygon in the space of demand values, which significantly narrows the area of optimal solution search for the considering bilevel problem. Moreover, such a polygon appears to be easily designed for an arbitrary road network, using solely observed congestion as input data. Thus, the findings obtained in the paper contribute to the development of tools for travel demand estimation in a congested urban road network.
Keywords: bi-level optimization, travel demand estimation, feasible region, user-equilibrium.
@article{MGTA_2022_14_3_a1,
     author = {Alexandr Y. Krylatov and Anastasia P. Raevskaya},
     title = {Design of the feasible region for demand values in a congested urban road network},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {22--44},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a1/}
}
TY  - JOUR
AU  - Alexandr Y. Krylatov
AU  - Anastasia P. Raevskaya
TI  - Design of the feasible region for demand values in a congested urban road network
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2022
SP  - 22
EP  - 44
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a1/
LA  - ru
ID  - MGTA_2022_14_3_a1
ER  - 
%0 Journal Article
%A Alexandr Y. Krylatov
%A Anastasia P. Raevskaya
%T Design of the feasible region for demand values in a congested urban road network
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2022
%P 22-44
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a1/
%G ru
%F MGTA_2022_14_3_a1
Alexandr Y. Krylatov; Anastasia P. Raevskaya. Design of the feasible region for demand values in a congested urban road network. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 3, pp. 22-44. http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a1/

[1] Bagloee S.A., Ceder A.A., “Transit-network design methodology for actual-size road networks”, Transportation Research Part B, 45 (2011), 1787–1804 | DOI

[2] Bar-Gera H., “Primal method for determining the most likely route flows in large road network”, Transportation Science, 40:3 (2006), 269–286 | DOI

[3] Bell M.G., Shield C.M., Busch F., Kruse C., “A stochastic user equilibrium path flow estimator”, Transportation Research Part C, 5:3 (1997), 197–210 | DOI

[4] Bierlaire M., “The total demand scale: a new measure of quality for static and dynamic origin-destination trip tables”, Transportation Research Part B, 36 (2002), 837–850 | DOI

[5] Fisk C., “On combining maximum entropy trip matrix estimation with user optimal assignment”, Transportation Research Part B, 22:1 (1988), 69–73 | DOI | MR

[6] Frederix R., Viti F., Tampere C.M.J., “Dynamic origin-destination estimation in congested networks: theoretical findings and implications in practice”, Transportmetrica A: Transport Science, 9:6 (2013), 494–513 | DOI

[7] Gribova V.V., Shamray N.B., Fedorishchev L.A., “Traffic modeling flows in a developing urban infrastructure with a software suite for creating interactive virtual environments”, Automation and Remote Control, 78 (2017), 235–246 | DOI | MR | Zbl

[8] Hernandez M.V.C., Valencia L.H.J., Solis Y.A.R., “Penalization and augmented lagrangian for o-d demand matrix estimation from transit segment counts”, Transportmetrica A: Transport Science, 15:2 (2019), 915–943 | DOI

[9] Heydecker B.G., Lam W.H.K., Zhang N., “Use of travel demand satisfaction to assess road network reliability”, Transportmetrica, 3:2 (2007), 139–171 | DOI

[10] Kitamura R., Susilo Y.O., “Is travel demand instable? A study of changes in structural relationships underlying travel”, Transportmetrica, 1:1 (2005), 23–45 | DOI

[11] Krylatov A., Raevskaya A., Zakharov V., “Travel demand estimation in urban road networks as inverse traffic assignment problem”, Transport and Telecommunication, 22:3 (2021), 287–300 | DOI | MR

[12] Krylatov A., Zakharov V., Tuovinen T., “Principles of wardrop for traffic assignment in a road network”, Springer Tracts on Transportation and Traffic, 15 (2020), 17–43 | DOI | MR

[13] Kukushkin N.S., “Rosenthal's potential and a discrete version of the Debreu-Gorman Theorem”, Automation and Remote Control, 76 (2015), 1101–1110 | DOI | MR

[14] Lampkin W., Saalmans P.D., “The design of routes, service frequencies and schedules for a municipal bus undertaking: A case study”, Operations Research Quarterly, 18 (1967), 375–397 | DOI

[15] Lundgren J.T., Peterson A., “A heuristic for the bilevel origin-destination matrix estimation problem”, Transportation Research Part B, 42 (2008), 339–354 | DOI

[16] Nguyen S., Estimating an od matrix from network data: A network equilibrium approach, Publication 60, Centre de Recherche sur les Transports, Universitet de Motreal, 1977

[17] Novikov D.A., “Games and networks”, Automation and Remote Control, 75:6 (2014), 1145–1154 | DOI | MR

[18] Ortega-Arranz H., Llanos D.R., Gonzalez-Escribano A., The Shortest-Path Problem. Analysis and Comparison of Methods, Springer, Cham, 2015 | MR

[19] Pal'tseva D.A., Parfenov A.P., “Atomic Routing Game with Capacity Constraints”, Automation and Remote Control, 80 (2019), 1901–1911 | DOI | MR | Zbl

[20] Patriksson M., The traffic assignment problem: models and methods, Dover Publ, New York, 1994

[21] Raevskaya A., Krylatov A., Ageev P., Kuznetsova D., “Restriction set design for travel demand values in an urban road network”, Lecture Notes in Networks and Systems, 502, 2022, 110–120 | DOI | MR

[22] Sheffi Y., Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods, Prentice-Hall, Inc, N.J., Englewood Cliffs, 1985 | MR

[23] Shen W., Wynter L., “A new one-level convex optimization approach for estimating origin-destination demand”, Transportation Research Part B, 46 (2012), 1535–1555 | DOI

[24] Shvetsov V.I., “Algorithms for distributing traffic flows”, Automation and Remote Control, 70 (2009), 1728–1736 | DOI | MR | Zbl

[25] Shvetsov V.I., “Mathematical modeling of traffic flows”, Automation and Remote Control, 64:11 (2003), 1651–1689 | DOI | MR | Zbl

[26] Wei C., Asakura Y., “A bayesian approach to traffic estimation in stochastic user equilibrium networks”, Transportation Research Part C, 36 (2013), 446–459 | DOI

[27] Xie F., Levinson D., “Modeling the growth of transportation networks: a comprehensive review”, Networks and Spatial Economics, 9 (2009), 291–307 | DOI | MR | Zbl

[28] Yang H., Sasaki T., Iida Y., Asakura Y., “Estimation of origin-destination matrices from link traffic counts on congested networks”, Transportation Research Part B, 26:6 (1992), 417–434 | DOI

[29] Zakharov V.V., Krylatov A.Y., “Competitive routing of traffic flows by navigation providers”, Automation and Remote Control, 77 (2016), 179–189 | DOI | MR | Zbl

[30] Zhao F., Zeng X., “Optimization of transit route network, vehicle head-ways, and timetables for large-scale transit networks”, European Journal of Operational Research, 186 (2008), 841–855 | DOI | MR | Zbl