Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2022_14_3_a1, author = {Alexandr Y. Krylatov and Anastasia P. Raevskaya}, title = {Design of the feasible region for demand values in a congested urban road network}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {22--44}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a1/} }
TY - JOUR AU - Alexandr Y. Krylatov AU - Anastasia P. Raevskaya TI - Design of the feasible region for demand values in a congested urban road network JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2022 SP - 22 EP - 44 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a1/ LA - ru ID - MGTA_2022_14_3_a1 ER -
%0 Journal Article %A Alexandr Y. Krylatov %A Anastasia P. Raevskaya %T Design of the feasible region for demand values in a congested urban road network %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2022 %P 22-44 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a1/ %G ru %F MGTA_2022_14_3_a1
Alexandr Y. Krylatov; Anastasia P. Raevskaya. Design of the feasible region for demand values in a congested urban road network. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 3, pp. 22-44. http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a1/
[1] Bagloee S.A., Ceder A.A., “Transit-network design methodology for actual-size road networks”, Transportation Research Part B, 45 (2011), 1787–1804 | DOI
[2] Bar-Gera H., “Primal method for determining the most likely route flows in large road network”, Transportation Science, 40:3 (2006), 269–286 | DOI
[3] Bell M.G., Shield C.M., Busch F., Kruse C., “A stochastic user equilibrium path flow estimator”, Transportation Research Part C, 5:3 (1997), 197–210 | DOI
[4] Bierlaire M., “The total demand scale: a new measure of quality for static and dynamic origin-destination trip tables”, Transportation Research Part B, 36 (2002), 837–850 | DOI
[5] Fisk C., “On combining maximum entropy trip matrix estimation with user optimal assignment”, Transportation Research Part B, 22:1 (1988), 69–73 | DOI | MR
[6] Frederix R., Viti F., Tampere C.M.J., “Dynamic origin-destination estimation in congested networks: theoretical findings and implications in practice”, Transportmetrica A: Transport Science, 9:6 (2013), 494–513 | DOI
[7] Gribova V.V., Shamray N.B., Fedorishchev L.A., “Traffic modeling flows in a developing urban infrastructure with a software suite for creating interactive virtual environments”, Automation and Remote Control, 78 (2017), 235–246 | DOI | MR | Zbl
[8] Hernandez M.V.C., Valencia L.H.J., Solis Y.A.R., “Penalization and augmented lagrangian for o-d demand matrix estimation from transit segment counts”, Transportmetrica A: Transport Science, 15:2 (2019), 915–943 | DOI
[9] Heydecker B.G., Lam W.H.K., Zhang N., “Use of travel demand satisfaction to assess road network reliability”, Transportmetrica, 3:2 (2007), 139–171 | DOI
[10] Kitamura R., Susilo Y.O., “Is travel demand instable? A study of changes in structural relationships underlying travel”, Transportmetrica, 1:1 (2005), 23–45 | DOI
[11] Krylatov A., Raevskaya A., Zakharov V., “Travel demand estimation in urban road networks as inverse traffic assignment problem”, Transport and Telecommunication, 22:3 (2021), 287–300 | DOI | MR
[12] Krylatov A., Zakharov V., Tuovinen T., “Principles of wardrop for traffic assignment in a road network”, Springer Tracts on Transportation and Traffic, 15 (2020), 17–43 | DOI | MR
[13] Kukushkin N.S., “Rosenthal's potential and a discrete version of the Debreu-Gorman Theorem”, Automation and Remote Control, 76 (2015), 1101–1110 | DOI | MR
[14] Lampkin W., Saalmans P.D., “The design of routes, service frequencies and schedules for a municipal bus undertaking: A case study”, Operations Research Quarterly, 18 (1967), 375–397 | DOI
[15] Lundgren J.T., Peterson A., “A heuristic for the bilevel origin-destination matrix estimation problem”, Transportation Research Part B, 42 (2008), 339–354 | DOI
[16] Nguyen S., Estimating an od matrix from network data: A network equilibrium approach, Publication 60, Centre de Recherche sur les Transports, Universitet de Motreal, 1977
[17] Novikov D.A., “Games and networks”, Automation and Remote Control, 75:6 (2014), 1145–1154 | DOI | MR
[18] Ortega-Arranz H., Llanos D.R., Gonzalez-Escribano A., The Shortest-Path Problem. Analysis and Comparison of Methods, Springer, Cham, 2015 | MR
[19] Pal'tseva D.A., Parfenov A.P., “Atomic Routing Game with Capacity Constraints”, Automation and Remote Control, 80 (2019), 1901–1911 | DOI | MR | Zbl
[20] Patriksson M., The traffic assignment problem: models and methods, Dover Publ, New York, 1994
[21] Raevskaya A., Krylatov A., Ageev P., Kuznetsova D., “Restriction set design for travel demand values in an urban road network”, Lecture Notes in Networks and Systems, 502, 2022, 110–120 | DOI | MR
[22] Sheffi Y., Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods, Prentice-Hall, Inc, N.J., Englewood Cliffs, 1985 | MR
[23] Shen W., Wynter L., “A new one-level convex optimization approach for estimating origin-destination demand”, Transportation Research Part B, 46 (2012), 1535–1555 | DOI
[24] Shvetsov V.I., “Algorithms for distributing traffic flows”, Automation and Remote Control, 70 (2009), 1728–1736 | DOI | MR | Zbl
[25] Shvetsov V.I., “Mathematical modeling of traffic flows”, Automation and Remote Control, 64:11 (2003), 1651–1689 | DOI | MR | Zbl
[26] Wei C., Asakura Y., “A bayesian approach to traffic estimation in stochastic user equilibrium networks”, Transportation Research Part C, 36 (2013), 446–459 | DOI
[27] Xie F., Levinson D., “Modeling the growth of transportation networks: a comprehensive review”, Networks and Spatial Economics, 9 (2009), 291–307 | DOI | MR | Zbl
[28] Yang H., Sasaki T., Iida Y., Asakura Y., “Estimation of origin-destination matrices from link traffic counts on congested networks”, Transportation Research Part B, 26:6 (1992), 417–434 | DOI
[29] Zakharov V.V., Krylatov A.Y., “Competitive routing of traffic flows by navigation providers”, Automation and Remote Control, 77 (2016), 179–189 | DOI | MR | Zbl
[30] Zhao F., Zeng X., “Optimization of transit route network, vehicle head-ways, and timetables for large-scale transit networks”, European Journal of Operational Research, 186 (2008), 841–855 | DOI | MR | Zbl