Optimum positioning of network platforms on a plane
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 3, pp. 3-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a study of equilibrium in a two-sided market for network platforms with cross externalities between buyers and sellers. The proposed model is a generalization of Armstrong's (2006) monopoly model for the case of a duopoly in a two-sided market for network platforms located on a plane. The paper solves the problem of optimal pricing and investigates the question of the optimal location of platforms in the market, provided that the heterogeneous utility of agents of both groups (buyers and sellers) is formed taking into account the Hotelling specification with the Manhattan metric.
Keywords: two-sided market, Nash equilibrium, network externalities, location problem, Hotelling specification.
@article{MGTA_2022_14_3_a0,
     author = {Elena N. Konovalchikova},
     title = {Optimum positioning of network platforms on a plane},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a0/}
}
TY  - JOUR
AU  - Elena N. Konovalchikova
TI  - Optimum positioning of network platforms on a plane
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2022
SP  - 3
EP  - 21
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a0/
LA  - ru
ID  - MGTA_2022_14_3_a0
ER  - 
%0 Journal Article
%A Elena N. Konovalchikova
%T Optimum positioning of network platforms on a plane
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2022
%P 3-21
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a0/
%G ru
%F MGTA_2022_14_3_a0
Elena N. Konovalchikova. Optimum positioning of network platforms on a plane. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 3, pp. 3-21. http://geodesic.mathdoc.fr/item/MGTA_2022_14_3_a0/

[1] Mazalova A., “Duopoliya Khotellinga na ploskosti v metrike Mankhettena”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 2012, no. 2, 33–43

[2] Armstrong M., “Competition in two-sided markets”, RAND Journal of Economics, 37 (2006), 668–691 | DOI

[3] Armstrong M., Wright J., “Two-Sided Markets, Competitive Bottlenecks and Exclusive Contracts”, Economic Theory, 32 (2007), 353–380 | DOI | MR | Zbl

[4] de Corniere A., “Search Advertising”, American Economic Journal: Microeconomics, 8:3 (2016), 156–188 | DOI

[5] Glen Weyl E., “A Price Theory of Multi-sided Platforms”, American Economic Review, 100:4 (2010), 1642–1672 | DOI

[6] Hotelling H., “Stability in competition”, Economic Journal, 39 (1929), 41–57 | DOI

[7] Kodera T., “Discriminatory Pricing and Spatial Competition in Two-Sided Media Markets”, The B.E. Journal of Economic Analysis and Policy, 15:2 (2015), 891–926 | DOI | MR

[8] Liu Q., Serfes K., “Price discrimination in two-sided markets”, Journal of Economics and Management Strategy, 22:4 (2013), 768–786

[9] Mazalov V., Konovalchikova E., “Hotelling's Duopoly in a Two-Sided Platform Market on the Plane”, Mathematics, 8:8 (2020), 865 | DOI

[10] Mallozzi L., “Noncooperative facility location games”, Operations Research Letters, 35 (2007), 151–154 | DOI | MR | Zbl

[11] Rochet J. C., Tirole J., “Cooperation among Competitors: The Economics of Payment Card Associations”, RAND Journal of Economics, 33 (2002), 1–22 | DOI

[12] Rochet J. C., Tirole J., “Platform Competition in Two-Sided Markets”, Journal of the European Economic Association, 1 (2003), 990–1029 | DOI

[13] Rochet J. C., Tirole J., “Two-Sided Markets: A Progress Report”, RAND Journal of Economics, 37 (2006), 645–667 | DOI

[14] Zhang K., Weiqi L., “Price discrimination in two-sided markets”, South African Journal of Economic and Management Sciences, 19:1 (2016), 1–17 | DOI | Zbl