On Stackelberg equilibrium in the sense of program strategies in Volterra functional operator games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 2, pp. 99-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a nonlinear Volterra functional operator equation controlled by two players with the help of finite dimensional program controls with integral objective functionals we prove existence of Stackelberg equilibrium (in the style of M.S. Nikol'skiy). On this way we use our formerly proved results on continuous dependence of the state and functionals on finite dimensional controls and also classical Weierstrass theorem. The property of being singleton for the minimizer set of the first player is proved by the scheme of M.S. Nikol'skiy applied earlier for a linear ordinary differential equation.
Keywords: nonlinear Volterra functional operator equation, existence of Stackelberg equilibrium.
@article{MGTA_2022_14_2_a5,
     author = {Andrey V. Chernov},
     title = {On {Stackelberg} equilibrium in the sense of program strategies in {Volterra} functional operator games},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {99--122},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2022_14_2_a5/}
}
TY  - JOUR
AU  - Andrey V. Chernov
TI  - On Stackelberg equilibrium in the sense of program strategies in Volterra functional operator games
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2022
SP  - 99
EP  - 122
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2022_14_2_a5/
LA  - ru
ID  - MGTA_2022_14_2_a5
ER  - 
%0 Journal Article
%A Andrey V. Chernov
%T On Stackelberg equilibrium in the sense of program strategies in Volterra functional operator games
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2022
%P 99-122
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2022_14_2_a5/
%G ru
%F MGTA_2022_14_2_a5
Andrey V. Chernov. On Stackelberg equilibrium in the sense of program strategies in Volterra functional operator games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 2, pp. 99-122. http://geodesic.mathdoc.fr/item/MGTA_2022_14_2_a5/

[1] Birkgof G., Teoriya reshetok, Nauka, M., 1984, 568 pp. | MR

[2] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KD «Librokom», M., 2011, 224 pp. | MR

[3] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981, 400 pp. | MR

[4] Vasilev F. P., “O dvoistvennosti v lineinykh zadachakh upravleniya i nablyudeniya”, Differents. uravneniya, 31:11 (1995), 1893–1900 | MR | Zbl

[5] Vlasenko A. A., Chikrii A. A., “Ob odnoi differentsialnoi igre v sisteme s raspredelennymi parametrami”, Tr. IMM UrO RAN, 20, no. 4, 2014, 71–80

[6] Vlasenko A. A., Rutkas A. G., Chikrii A. A., “O differentsialnoi igre v abstraktnoi parabolicheskoi sisteme”, Tr. IMM UrO RAN, 21, no. 2, 2015, 26–40

[7] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984, 752 pp. | MR

[8] Nikolskii M. S., “O ravnovesii po Shtakelbergu v programmnykh strategiyakh v lineinykh differentsialnykh igrakh”, Differentsialnye uravneniya, 42:12 (2006), 1657–1662 | MR | Zbl

[9] Satimov N. Yu., Tukhtasinov M., “Ob uklonenii ot vstrechi v odnom klasse raspredelennykh upravlyaemykh sistem”, Matem. zametki, 97:5 (2015), 749–760 | MR | Zbl

[10] Sokolov S. V., “O reshenii zadachi differentsialnoi igry dlya raspredelennykh dinamicheskikh sistem”, Problemy upravleniya i informatiki, 157:1 (2004), 71–77

[11] Sumin V. I., Chernov A. V., Volterrovy operatornye uravneniya v banakhovykh prostranstvakh: ustoichivost suschestvovaniya globalnykh reshenii, Dep. v VINITI 25.04.2000. No 1198-V00, NNGU, Nizhnii Novgorod, 2000

[12] Sumin V. I., Chernov A. V., “O dostatochnykh usloviyakh ustoichivosti suschestvovaniya globalnykh reshenii volterrovykh operatornykh uravnenii”, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. Ser. Matematicheskoe modelirovanie i optimalnoe upravlenie, 2003, no. 1(26), 39–49

[13] Sumin V. I., “Ob obosnovanii gradientnykh metodov dlya raspredelennykh zadach optimalnogo upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 30:1 (1990), 3–21 | MR | Zbl

[14] Sumin V. I., “Upravlyaemye funktsionalnye volterrovy uravneniya v lebegovykh prostranstvakh”, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. Ser. Matematicheskoe modelirovanie i optimalnoe upravlenie, 1998, no. 2(19), 138–151

[15] Sumin V. I., Chernov A. V., “Operatory v prostranstvakh izmerimykh funktsii: volterrovost i kvazinilpotentnost”, Differentsialnye uravneniya, 34:10 (1998), 1402–1411 | MR | Zbl

[16] Chernov A. V., “O differentsialnykh igrakh v banakhovom prostranstve na fiksirovannoi tsepochke”, Matem. teoriya igr i ee prilozheniya, 12:3 (2020), 89–118 | Zbl

[17] Chernov A. V., “O volterrovykh funktsionalno-operatornykh igrakh na zadannom mnozhestve”, Matem. teoriya igr i ee prilozheniya, 3:1 (2011), 91–117 | MR | Zbl

[18] Chernov A. V., “O suschestvovanii $\varepsilon$-ravnovesiya v volterrovykh funktsionalno-operatornykh igrakh bez diskriminatsii”, Matem. teoriya igr i ee prilozheniya, 4:1 (2012), 74–92 | MR | Zbl

[19] Chernov A. V., “Ob odnom podkhode k postroeniyu $\varepsilon$-ravnovesiya v beskoalitsionnykh igrakh, svyazannykh s uravneniyami matematicheskoi fiziki, upravlyaemykh mnogimi igrokami”, Matem. teoriya igr i ee prilozheniya, 5:1 (2013), 104–123 | Zbl

[20] Chernov A. V., “Ob odnom mazhorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matematika, 2011, no. 3, 95–107 | Zbl

[21] Chernov A. V., “O mazhorantno-minorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matematika, 2012, no. 3, 62–73 | Zbl

[22] Chernov A. V., “O dostatochnykh usloviyakh upravlyaemosti nelineinykh raspredelennykh sistem”, Zhurn. vychislit. matem. i matem. fiz., 52:8 (2012), 1400–1414 | MR | Zbl

[23] Chernov A. V., “Ob upravlyaemosti nelineinykh raspredelennykh sistem na mnozhestve konechnomernykh approksimatsii upravleniya”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2013, no. 1, 83–98 | Zbl

[24] Chernov A. V., “O totalno globalnoi razreshimosti upravlyaemogo uravneniya tipa Gammershteina s variruemym lineinym operatorom”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 25:2 (2015), 230–243 | Zbl

[25] Chernov A. V., “O totalnom sokhranenii globalnoi razreshimosti zadachi Gursa dlya upravlyaemogo polulineinogo psevdoparabolicheskogo uravneniya”, Vladikavkazskii matem. zhurnal, 16:3 (2014), 55–63 | MR | Zbl

[26] Chernov A. V., “Ob odnom mazhorantno-minorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemykh raspredelennykh sistem”, Differentsialnye uravneniya, 52:1 (2016), 112–122 | MR | Zbl

[27] Chernov A. V., “O totalnom sokhranenii globalnoi razreshimosti funktsionalno-operatornykh uravnenii”, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2009, no. 3, 130–137

[28] Chernousko F. L., “Granichnye upravleniya v sistemakh s raspredelennymi parametrami”, Prikl. matematika i mekhanika, 56:5 (1992), 810–826 | MR | Zbl

[29] Yarovenko I. P., “O razreshimosti kraevoi zadachi dlya uravneniya perenosa izlucheniya s uchetom komptonovskogo rasseyaniya”, Dalnevost. matem. zhurn., 14:1 (2014), 109–121 | MR | Zbl

[30] Ibragimov G., Alias I. A., Waziri U., Ja'afaru A. B., “Differential game of optimal pursuit for an infinite system of differential equations”, Bull. Malays. Math. Sci. Soc., 2(42):1 (2019), 391–403 | DOI | MR | Zbl

[31] Il'in V. A., Tikhomirov V. V., “The wave equation with a boundary control at both endpoints and the complete vibration damping problem”, Differ. Equations, 35:5 (1999), 697–708 | MR

[32] Lions J.-L., “Exact controllability, stabilization and perturbations for distributed systems”, SIAM Rev., 30:1 (1988), 1–68 | DOI | MR | Zbl

[33] Ramaswamy M., Shaiju A. J., “Construction of approximate saddle-point strategies for differential games in a Hilbert space”, J. Optim. Theory Appl., 141 (2009), 349–370 | DOI | MR | Zbl