Cooperative differential games with the utility function switched at a random time moment
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 2, pp. 31-50
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper describes a differential game of $n$ persons in which the utility functions of the players have a hybrid form, namely, they are changed at a random moment in time. With the help of integration in parts, the form of the payoff functional is simplified. For the cooperative scenario the problem of time-consistency of the optimality principle chosen by the players is studied and a solution is proposed in the form of an adapted imputation distribution procedure. The differential investment game is considered as an example.
Keywords:
cooperative games, differential games, time-consistency problem, random duration, hybris differential games, imputation distribution procedure.
@article{MGTA_2022_14_2_a1,
author = {Anastasiia P. Zaremba},
title = {Cooperative differential games with the utility function switched at a random time moment},
journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
pages = {31--50},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MGTA_2022_14_2_a1/}
}
TY - JOUR AU - Anastasiia P. Zaremba TI - Cooperative differential games with the utility function switched at a random time moment JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2022 SP - 31 EP - 50 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2022_14_2_a1/ LA - ru ID - MGTA_2022_14_2_a1 ER -
%0 Journal Article %A Anastasiia P. Zaremba %T Cooperative differential games with the utility function switched at a random time moment %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2022 %P 31-50 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2022_14_2_a1/ %G ru %F MGTA_2022_14_2_a1
Anastasiia P. Zaremba. Cooperative differential games with the utility function switched at a random time moment. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 2, pp. 31-50. http://geodesic.mathdoc.fr/item/MGTA_2022_14_2_a1/