Cooperative differential games with the utility function switched at a random time moment
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 2, pp. 31-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper describes a differential game of $n$ persons in which the utility functions of the players have a hybrid form, namely, they are changed at a random moment in time. With the help of integration in parts, the form of the payoff functional is simplified. For the cooperative scenario the problem of time-consistency of the optimality principle chosen by the players is studied and a solution is proposed in the form of an adapted imputation distribution procedure. The differential investment game is considered as an example.
Keywords: cooperative games, differential games, time-consistency problem, random duration, hybris differential games, imputation distribution procedure.
@article{MGTA_2022_14_2_a1,
     author = {Anastasiia P. Zaremba},
     title = {Cooperative differential games with the utility function switched at a random time moment},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {31--50},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2022_14_2_a1/}
}
TY  - JOUR
AU  - Anastasiia P. Zaremba
TI  - Cooperative differential games with the utility function switched at a random time moment
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2022
SP  - 31
EP  - 50
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2022_14_2_a1/
LA  - ru
ID  - MGTA_2022_14_2_a1
ER  - 
%0 Journal Article
%A Anastasiia P. Zaremba
%T Cooperative differential games with the utility function switched at a random time moment
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2022
%P 31-50
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2022_14_2_a1/
%G ru
%F MGTA_2022_14_2_a1
Anastasiia P. Zaremba. Cooperative differential games with the utility function switched at a random time moment. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 2, pp. 31-50. http://geodesic.mathdoc.fr/item/MGTA_2022_14_2_a1/

[1] Aizeks R., Differentsialnye igry, Mir, M., 1967

[2] Petrosyan L. A., “O novykh silno dinamicheski ustoichivykh printsipakh optimalnosti v kooperativnykh differentsialnykh igrakh”, Optimalnoe upravlenie i differentsialnye uravneniya, Trudy matematicheskogo instituta im. Steklova, 211, 1995, 370–376 | Zbl

[3] Petrosyan L. A., “Silno dinamicheski ustoichivye differentsialnye printsipy optimalnosti”, Vestnik LGU, Seriya 1: matematika, mekhanika, astronomiya, 1993, no. 4, 35–40 | Zbl

[4] Petrosyan L. A., “Ustoichivost reshenii v differentsialnykh igrakh so mnogimi uchastnikami”, Vestnik LGU, 1977, no. 4, 46–52 | Zbl

[5] Petrosyan L. A., “Kharakteristicheskie funktsii kooperativnykh differentsialnykh igr”, Vestnik SPbGU, ser. 1: Matematika, mekhanika, astronomiya, 1995, no. 1, 48–52 | Zbl

[6] Petrosyan L. A., Danilov N. N., “Ustoichivye resheniya neantagonisticheskikh differentsialnykh igr s transferabelnymi vyigryshami”, Vestnik LGU, 1979, no. 1, 46–54

[7] Petrosyan L. A., Zenkevich N. A., “Printsipy ustoichivoi kooperatsii”, Matematicheskaya teoriya igr i ee prilozheniya, 2009, 106–123

[8] Petrosyan L. A., Shevkoplyas E. V., “Kooperativnye differentsialnye igry so sluchainoi prodolzhitelnostyu”, Vestnik SPbGU. Ser. 1, 2000, no. 4, 18–23 | Zbl

[9] Azhmyakov V., Attia S. A., Gromov D., Raisch J., “Necessary optimality conditions for a class of hybrid optimal control problems”, HSCC 2007, LNCS, 4416, 2007, 637–640 | MR | Zbl

[10] De Zeeuw A., He X., “Managing a renewable resource facing the risk of a regime shift in the ecological system”, Resour. Energy Econ., 2017, 42–54 | DOI

[11] Dockner E. J., Jorgensen S., Long N. V., Sorger G., Differential Games in Economics and Management Science, Cambridge University Press, Cambridge, UK, 2000 | MR | Zbl

[12] Gromov D. V., Gromova E. V., “Differential games with random duration: a hybrid systems formulation”, Contributions to game theory and management, 2014, 104–119 | MR | Zbl

[13] Gromov D. V., Gromova E. V., “On a class of hybrid differential games”, Dynamic Games and Applications, 2017, 266–288 | DOI | MR | Zbl

[14] Gromova E., Malakhova A., Palestini A., “Payoff Distribution in a Multi-Company Extraction Game with Uncertain Duration”, Mathematics, 6 (2018), 165 pp. | DOI

[15] Malakhova A. P., Gromova E. V., “Dynamic programming equations for the game-theoretical problem with random initial time”, Lecture Notes in Control and Information Sciences, Springer, 2020 | MR

[16] Malakhova A. P., Gromova E. V., “Strongly Time-Consistent Core in Differential Games with Discrete Distribution of Random Time Horizon”, Math. Appl., 46 (2018), 197–209 | MR | Zbl

[17] Riedinger P., Iung C., Kratz F., “An optimal control approach for hybrid systems”, European Journal of Control, 9:5 (2003), 449–458 | DOI | Zbl

[18] Shaikh M. S., Caines P. E., “On the hybrid optimal control problem: Theory and algorithms”, IEEE Transactions on Automatic Control, 52:9 (2007), 1587–1603 | DOI | MR | Zbl

[19] Zaremba A., Gromova E., Tur A., “A Differential Game with Random Time Horizon and Discontinuous Distribution”, Mathematics, 8 (2020), 2185 | DOI