A comparative analysis of sustainable exploitation of renewable resources for different information structures
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 1, pp. 102-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a brief description of the authors' concept of sustainable management is given. According to the proposed concept, the sustainable development of an active system means that in the same time some requirements of viability of the system are satisfied, and the interests of the active agents are considered and coordinated. The main emphasis is made on two mathematical examples. First, a relation between egoistic and altruistic evolutionary strategies is studied by means of the Verhulst-Pearl model. Second, selfish and cooperative behavior of the users of a renewable resource is compared on the base of a differential game model. The conditions of viability are formalized as phase constraints. Their satisfaction may be a result of the voluntary coordination of the agents or their enforced coordination provided by a specially introduced principal. The main contribution of the paper consists in the comparative analysis of these ways of sustainable management.
Keywords: active systems, differential games, sustainable management, viability.
@article{MGTA_2022_14_1_a4,
     author = {Gennady A. Ougolnitsky and Anatoly B. Usov},
     title = {A comparative analysis of sustainable exploitation of renewable resources for different information structures},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {102--125},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2022_14_1_a4/}
}
TY  - JOUR
AU  - Gennady A. Ougolnitsky
AU  - Anatoly B. Usov
TI  - A comparative analysis of sustainable exploitation of renewable resources for different information structures
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2022
SP  - 102
EP  - 125
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2022_14_1_a4/
LA  - ru
ID  - MGTA_2022_14_1_a4
ER  - 
%0 Journal Article
%A Gennady A. Ougolnitsky
%A Anatoly B. Usov
%T A comparative analysis of sustainable exploitation of renewable resources for different information structures
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2022
%P 102-125
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2022_14_1_a4/
%G ru
%F MGTA_2022_14_1_a4
Gennady A. Ougolnitsky; Anatoly B. Usov. A comparative analysis of sustainable exploitation of renewable resources for different information structures. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 1, pp. 102-125. http://geodesic.mathdoc.fr/item/MGTA_2022_14_1_a4/

[1] Kleimenov A.F., “Altruisticheskii i agressivnyi tipy povedeniya v neantagonisticheskoi pozitsionnoi igre trekh lits”, Trudy IMM URO RAN, 25, no. 3, 2019, 108–117

[2] Aubin J.-P., Viability Theory, Springer-Verlag, Berlin, 1991 | MR

[3] Cairns R.D., Martinet V., “An environmental-economic measure of sustainable development”, European Economic Review, 69 (2014), 4–17 | DOI

[4] Dockner E., Jorgensen S., Long N.V., Sorger G., Differential Games in Economics and Management Science, Cambridge University Press, Cambridge, 2000 | MR | Zbl

[5] Gorelov M.A., Kononenko A.F., “Dynamic models of conflicts. III. Hierarchical games”, Automation and Remote Control, 76:2 (2015), 264–277 | DOI | MR | Zbl

[6] Kates R.W., Clark W.S., Corell R., Hall J.M. et al., “Sustainability Science”, Science, 292 (2001), 641–642 | DOI

[7] Kot M., Elements of Mathematical Ecology, Cambridge University Press, Cambridge, 2001 | MR

[8] Laffont J.-J., Martimort D., The Theory of Incentives: The Principal-Agent Model, Princeton University Press, Princeton, 2002

[9] Laval Ch., L'homme economique: Essai sur les racines du neoliberalisme, Editions Gallimard, Paris, 2007

[10] Novikov D. (ed.), Mechanism design and management: Mathematical methods for smart organizations, Nova Science Publishers, New York, 2013

[11] Myerson R., “Optimal coordination mechanisms in generalized principal-agent models”, J. Math. Econ., 10 (1982), 67–81 | DOI | MR | Zbl

[12] Myerson R., “Mechanism design by an informed principal”, Econometrica, 51 (1983), 1767–1798 | DOI | MR

[13] Novikov D., Theory of control in organizations, Nova Science Publishers, New York, 2013 | MR

[14] Ougolnitsky G., Sustainable Management, Nova Science Publishers, New York, 2011

[15] Ougolnitsky G.A., Usov A.B., “Computer Simulations as a Solution Method for Differential Games”, Computer Simulations: Advances in Research and Applications, eds. M.D. Pfeffer, E. Bachmaier, Nova Science Publishers, New York, 2018, 63–106

[16] Petrosyan L. A. Yeung D. W. K., Subgame-consistent Economic Optimization, Springer-Verlag, Berlin, 2012 | MR

[17] Wilson E., The Meaning of Human Existence, Liveright Publishing Corporation, New York-London, 2014

[18] Yeung D. W. K., Petrosyan L. A., Lee M. C. C., Dynamic Cooperation: A Paradigm on the Cutting Edge of Game Theory, China Market Press, China, 2007

[19] http://don-agro.ru/old/index.php?id=2236

[20] https://nadalniivostok.rf/storage/bp/bp-17.pdf