Bounded rationality and control
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 1, pp. 49-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

The rationality constraint condition is formulated, which states that when solving control, computing and communication problems ($C^3$) together, real-time requirements may not make it possible to find the optimal solution (control action), forcing the use of almost optimal solutions (the best found with the existing restrictions on the search procedure). This condition connects and demonstrates the unity and deep interconnection of such concepts common in management and optimization as: necessary diversity, limited rationality, analytical complexity, heuristics, records in real-time optimization. In relation to the problem of institutional management of organizational and technical systems, a number of examples of solving problems of minimizing error or complexity, as well as searching for: critical bandwidth of the communication channel, critical computing rate and the maximum number of controlled subsystems are given.
Keywords: decision-making, bounded rationality, network management, hierarchical game theory, analytical complexity, real time, the law of necessary diversity, heuristics, standard solution.
@article{MGTA_2022_14_1_a2,
     author = {Dmitriy A. Novikov},
     title = {Bounded rationality and control},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {49--84},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2022_14_1_a2/}
}
TY  - JOUR
AU  - Dmitriy A. Novikov
TI  - Bounded rationality and control
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2022
SP  - 49
EP  - 84
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2022_14_1_a2/
LA  - ru
ID  - MGTA_2022_14_1_a2
ER  - 
%0 Journal Article
%A Dmitriy A. Novikov
%T Bounded rationality and control
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2022
%P 49-84
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2022_14_1_a2/
%G ru
%F MGTA_2022_14_1_a2
Dmitriy A. Novikov. Bounded rationality and control. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 1, pp. 49-84. http://geodesic.mathdoc.fr/item/MGTA_2022_14_1_a2/

[1] Aizerman M.A., Aleskerov F.T., Vybor variantov: osnovy teorii, Nauka, M., 1990 | MR

[2] Aleskerov F.T., Khabina E.L., Shvarts D.A., Binarnye otnosheniya, grafy i kollektivnye resheniya, VShE, M., 2006

[3] Andrievskii B.R., Matveev A.S., Fradkov A.L., “Upravlenie i otsenivanie pri informatsionnykh ogranicheniyakh: k edinoi teorii upravleniya, vychislenii i svyazi”, Avtomatika i telemekhanika, 2010, no. 4, 34–99

[4] Belov M.V., Novikov D.A., Modeli deyatelnosti, Lenand, M., 2021

[5] Belov M.V., Novikov D.A., Modeli tekhnologii, Lenand, M., 2019

[6] Vasilev D.K., Zalozhnev A.Yu., Novikov D.A., Tsvetkov A.V., Tipovye resheniya v upravlenii proektami, IPU RAN, M., 2003

[7] Germeier Yu.B., Vvedenie v teoriyu issledovaniya operatsii, Nauka, M., 1971 | MR

[8] Kalmykov S.A., Shokin Yu.I., Yuldashev Z.Kh., Metody intervalnogo analiza, Nauka, Novosibirsk, 1986 | MR

[9] Korepanov V.O., Modeli refleksivnogo gruppovogo povedeniya i upravleniya, IPU RAN, M., 2011

[10] Kuznetsov O.P., “Ogranichennaya ratsionalnost i prinyatie reshenii”, Iskusstvennyi intellekt i prinyatie reshenii, 2019, no. 1, 3–15 | MR

[11] Larichev O.I., Teoriya i metody prinyatiya reshenii, Logos, M., 2002

[12] Malishevskii A.V., Kachestvennye modeli v teorii slozhnykh sistem, Nauka, M., 1998

[13] Molodtsov D.A., Ustoichivost printsipov optimalnosti, Nauka, M., 1987 | MR

[14] Mekhanizmy upravleniya, Lenand, 2011

[15] Neiman D., Morgenshtern O., Teoriya igr i ekonomicheskoe povedenie, Nauka, M., 1970 | MR

[16] Nesterov Yu.E., Metody vypukloi optimizatsii, MTsNMO, M., 2010

[17] Novikov D.A., “Analiticheskaya slozhnost i pogreshnost resheniya zadach upravleniya organizatsionno-tekhnicheskimi sistemami”, Avtomatika i telemekhanika, 2018, no. 5, 107–118 | Zbl

[18] Novikov D.A., Institutsionalnoe upravlenie organizatsionnymi sistemami, IPU RAN, M., 2004

[19] Novikov D.A., Kibernetika: Navigator. Istoriya kibernetiki, sovremennoe sostoyanie, perspektivy razvitiya, LENAND, M., 2016

[20] Novikov D.A., “Modeli strategicheskoi refleksii”, Avtomatika i telemekhanika, 2012, no. 1, 3–23

[21] Novikov D.A., Teoriya upravleniya organizatsionnymi sistemami, 3-e izd., Fizmatlit, M., 2012

[22] Novikov D.A., Setevye struktury i organizatsionnye sistemy, IPU RAN, M., 2003

[23] Novikov D.A., Chkhartishvili A.G., Refleksiya i upravlenie: matematicheskie modeli, Fizmatlit, M., 2013

[24] Opoitsev V.I., Ravnovesie i ustoichivost v modelyakh kollektivnogo povedeniya, Nauka, M, 1977 | MR

[25] Petrovskii A.B., Teoriya prinyatiya reshenii, Akademiya, M., 2009

[26] A.L. Fradkov (red.), Problemy setevogo upravleniya, IKI, M.-Izhevsk, 2015

[27] Teoriya upravleniya (dopolnitelnye glavy), Lenand, M., 2019

[28] Fishbern P., Teoriya poleznosti dlya prinyatiya reshenii, Nauka, M., 1978

[29] Eshbi U.R., Vvedenie v kibernetiku, Mir, M., 1966

[30] Abel D., Concepts in Bounded Rationality: Perspectives from Reinforcement Learning, Master's Thesis, Brown University, Providence, 2019

[31] Aleskerov F., Monjardet B., Utility Maximization, Choice and Preference, Springer, Berlin, 2013 | MR

[32] Nisan N., Roughgarden T., Tardos E., Vazirani V. (eds.), Algorithmic Game Theory, Cambridge University Press, N.Y., 2009 | MR

[33] Aumann R., “Rationality and Bounded Rationality”, Games and Economic Behavior, 21 (1997), 2–14 | DOI | MR | Zbl

[34] Aumann R., Rule-rationality versus Act-rationality, Discussion Paper No 497, Hebrew University, Jerusalem, 2008

[35] G. Gigerenzer, R. Selten (eds.), Bounded Rationality: The Adaptive Toolbox, The MIT Press, Massachusetts, 2001

[36] Braun D., Ortega P., “Information-Theoretic Bounded Rationality and $\varepsilon$-Optimality”, Entropy, 16 (2014), 4662–4676 | DOI | MR | Zbl

[37] Camerer C., Behavioral Game Theory: Experiments in Strategic Interactions, Princeton University Press, Princeton, 2003

[38] Camerer C., “Bounded Rationality in Individual Decision Making”, Experimental Economics, 1 (1998), 163–183 | DOI | Zbl

[39] Cherniak C., “Minimal Rationality”, Mind., 90:358 (1981), 161–183 | DOI

[40] Christensen D. et al., Putting Logic in its Place: Formal Constraints on Rational Belief, Oxford University Press, Oxford, 2004

[41] Damasio A., Descartes Error: Emotion, Reason, and the Human Brain, Pengium Books, N.Y., 2005

[42] Dhami S., The Foundations of Behavioral Economic Analysis, Oxford University Press, Oxford, 2016 | MR

[43] Fudenberg D., Strack P., Strzalecki T., “Speed, Accuracy, and the Optimal Timing of Choices”, American Economic Review, 108:12 (2018), 3651–3684 | DOI

[44] Gershman S., Horvitz E., Tenenbaum J., “Computational Rationality: A Converging Paradigm for Intelligence in Brains, Minds and Machines”, Science, 349:6245 (2015), 273–278 | DOI | MR | Zbl

[45] Gigerenzer G., Adaptive Thinking: Rationality in the Real World, Oxford University Press, Oxford, 2000

[46] Gigerenzer G., “Why Heuristics Work”, Perspectives on Psychological Science, 3:1 (2008), 20–29 | DOI

[47] Gintis H., The Bounds of Reason: Game Theory and the Unification of the Behavioral Sciences, Princeton University Press, Princeton, 2009 | MR | Zbl

[48] Gottwald S., Braun D., Bounded Rational Decision-Making from Elementary Computations that Reduce Uncertainty, Entropy, 21, 2019, 375 pp. | DOI | MR

[49] Hansen E., Walster G., Global Optimization Using Interval Analysis, Marcel Dekker, New York, 2004 | MR | Zbl

[50] Kahneman D., “Maps of Bounded Rationality: Psychology for Behavioral Economics”, American Economic Review, 93 (2003), 1449–1475 | DOI

[51] Kahneman D., Tversky A., Judgment Under Uncertainty: Heuristics and Biases, Cambridge University Press, Cambridge, 1982

[52] Lewis R., Howes A., Singh S., “Computational Rationality: Linking Mechanism and Behavior through Bounded Utility Maximization”, Topics in Cognitive Science, 6:2 (2014), 279–311 | DOI | MR

[53] Mansour Y., Computational Game Theory, Tel Aviv University, Tel Aviv, 2003

[54] Matveev A., Savkin A., Estimation and Control over Communication Networks, Birkhauser, Basel, 2009 | MR | Zbl

[55] Matveev A., Savkin A., “The Problem of State Estimation via Asynchronous Communication Channels with Irregular Transmission Times”, IEEE Transactions on Automatic Control, 48:4 (2003), 670–676 | DOI | MR | Zbl

[56] Nair G., Evans R., “Exponential Stability of Finitedimensional Linear Systems with Limited Data Rates”, Automatica, 39 (2003), 585–593 | DOI | MR | Zbl

[57] Narahari Y., Game Theory and Mechanism Design, World Scientific Publishing Company, Singapore, 2014 | MR | Zbl

[58] Novikov D., “Control, Activity, Personality”, Advances in Systems Science and Applications, 20:3 (2020), 113–135 | MR

[59] Pratt J., “Risk Aversion in the Small and in the Large”, Econometrica, 32:1/2 (1964), 122–136 | DOI | Zbl

[60] D. Bonvin (ed.), Real-Time Optimization, MDPI, Basel, 2017

[61] Rubinstein A., “Modeling Bounded Rationality in Economic Theory: Four Examples”, Routledge Handbook of Bounded Rationality, Routledge, N.Y., 2020, 453–469

[62] Russel S., Subramanian D., “Provably Bounded-optimal Agents”, Journal of Artificial Intelligence Research, 1995, no. 2, 575–609 | DOI | Zbl

[63] Simon H., “A Behavioral Model of Rational Choice”, Quarterly Journal of Economics, 69 (1955), 99–118 | DOI

[64] Simon H., Models of Bounded Rationality, v. 1, Economic Analysis and Public Policy; v. 2, Behavioral Economics and Business Organization, MIT Press, Cambridge, 1982; reprinted 1983

[65] Simon H., Models of Man; Social and Rational, Wiley, London, 1957 | MR | Zbl

[66] Simon H., “Rationality as Process and as Product of Thought. Richard Ely Lecture”, American Economic Review, 68:2 (1978), 1–16

[67] Stanovich K., The Psychology of Rational Thought, Yale University Press, New Haven, 2009

[68] Wall K., “A Bounded Rationality Decision Process Model”, Proceedings of IFAC Symposium on Dynamic Modelling and Control of National Economies (Edinburgh, 1989), 473–478