Sequential equilibria in signaling games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 1, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers Bayesian multi-stage signaling games. Previously formulated for extensive-form games, concepts of sequential equilibrium, separating equilibrium and pooling equilibrium are specified, and calculating methods for these equilibria are also discussed. A competitive collision model with signals indicating rivals’ states is studied as a specific example. We determine conditions for existence of separating and pooling equilibria with ordered competition, in which the competition object goes to one of the rivals without a rigid encounter. Model parameters ranges of the equilibria existence are also determined.
Keywords: multi-stage game, signaling game, ordered competition, separating equilibrium, pooling equilibrium.
@article{MGTA_2022_14_1_a0,
     author = {Alexander A. Vasin and Irina Yu. Seregina},
     title = {Sequential equilibria in signaling games},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2022_14_1_a0/}
}
TY  - JOUR
AU  - Alexander A. Vasin
AU  - Irina Yu. Seregina
TI  - Sequential equilibria in signaling games
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2022
SP  - 3
EP  - 20
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2022_14_1_a0/
LA  - ru
ID  - MGTA_2022_14_1_a0
ER  - 
%0 Journal Article
%A Alexander A. Vasin
%A Irina Yu. Seregina
%T Sequential equilibria in signaling games
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2022
%P 3-20
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2022_14_1_a0/
%G ru
%F MGTA_2022_14_1_a0
Alexander A. Vasin; Irina Yu. Seregina. Sequential equilibria in signaling games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 14 (2022) no. 1, pp. 3-20. http://geodesic.mathdoc.fr/item/MGTA_2022_14_1_a0/

[1] Vasin A.A., Nekooperativnye igry v prirode i obschestve, MAKS Press, M., 2005

[2] Danilov V.I., Lektsii po teorii igr, Rossiiskaya ekonomicheskaya shkola, M., 2002

[3] Zakharov A.V., Teoriya igr v obschestvennykh naukakh, Izdatelskii dom NIU VShE, M., 2015

[4] Denzau A.T., North D., “Shared Mental Models: Ideologies and Institutions”, Kyklos, 47:1 (1994), 3–31 | DOI

[5] Fudenberg D., Tirole J., Game theory, MIT Press, 1991 | MR | Zbl

[6] GardnerR., Morris M.R., “The evolution of bluffing in animal contests: an ESS approach”, Journal of Theoretical Biology, 137:2 (1989), 235–243 | DOI | MR

[7] Kim Y.-G., “Status signaling games in animal contests”, Journal of Theoretical Biology, 176:2 (1995), 221–231 | DOI

[8] Kreps D.M., Wilson R.B., “Sequential Equilibrim”, Econometrica, 50:4 (1982), 863–894 | DOI | MR | Zbl

[9] Maynard Smith J., Evolution and the Theory of Games, Cambridge University Press, Cambridge, 1982 | Zbl

[10] Milgrom P., Roberts J., “Limit Pricing and Entry Under Incomplete Information: An Equilibrium Analysis”, Econometrica, 50:2 (1982), 443–460 | DOI | MR

[11] Reny P.J., “Backward induction, normal form perfection and explicable equilibria”, Econometrica, 60:3 (1992), 627–649 | DOI | MR | Zbl

[12] Spence A.M., “Job market signaling”, The Quarterly Journal of Economics, 87:3 (1973), 355–374 | DOI

[13] Tadelis S., Game theory: an introduction, Prinston University Press, 2013 | MR