Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2021_13_4_a4, author = {Dmitry V. Khlopin}, title = {Differential game with discrete stopping time}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {93--128}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2021_13_4_a4/} }
Dmitry V. Khlopin. Differential game with discrete stopping time. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 4, pp. 93-128. http://geodesic.mathdoc.fr/item/MGTA_2021_13_4_a4/
[1] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977
[2] Dynkin E. B., “Igrovoi variant zadachi ob optimalnoi ostanovke”, Doklady AN SSSR, 185:1 (1969), 16–19 | Zbl
[3] Krasovskii N. N., “Igra sblizheniya-ukloneniya so stokhasticheskim povodyrem”, Doklady AN SSSR, 237:5 (1977), 1020–1023 | Zbl
[4] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974
[5] Krasovskii N. N., Kotelnikova A. N., “Differentsialnaya igra sblizheniya-ukloneniya. Stokhasticheskii povodyr”, Trudy IMM UrO RAN, 15, no. 4, 2009, 146–166
[6] Petrosyan L. A., Shevkoplyas E. V., “Kooperativnye differentsialnye igry so sluchainoi prodolzhitelnostyu”, Vestnik Sankt-Peterburgskogo Universiteta. Seriya 1: Matematika, Mekhanika, Astronomiya, 2000, no. 4, 14–18 | Zbl
[7] Seregina T. V., Ivashko A. A., Mazalov V. V., “Strategii optimalnoi ostanovki v igre “The Price Is Right””, Trudy IMM UrO RAN, 25, no. 3, 2019, 217–231 | Zbl
[8] Khlopin D. V., “Differentsialnaya igra s vozmozhnostyu dosrochnogo zaversheniya”, Trudy IMM UrO RAN, 27, no. 4, 2021
[9] Amir R., Evstigneev I. V., Schenk-Hoppé K.R., “Asset market games of survival: a synthesis of evolutionary and dynamic games”, Annals of Finance, 9:2 (2013), 121–144 | DOI | Zbl
[10] Averboukh Y., “Approximate solutions of continuous-time stochastic games”, SIAM J. Control Optim., 54:5 (2016), 2629–2649 | DOI | Zbl
[11] Averboukh Y., “Approximate Public-Signal Correlated Equilibria For Nonzero-Sum Differential Games”, SIAM J. Control Optim., 57:1 (2019), 743–772 | DOI | Zbl
[12] Basu A., Stettner L., “Zero-sum Markov games with impulse controls”, SIAM J. Control Optim., 58:1 (2020), 580–604 | DOI | Zbl
[13] Bensoussan A., Friedman A., “Nonlinear variational inequalities and differential games with stopping times”, Journal of Functional Analysis, 16:1 (1974), 305–352 | DOI | Zbl
[14] Bensoussan A., Friedman A., “Nonzero-sum stochastic differential games with stopping times and free boundary problems”, Transactions of the American Mathematical Society, 231:2 (1977), 275–327 | DOI | Zbl
[15] Bielecki T. R., Crépey S., Jeanblanc M., Rutkowski M., “Arbitrage pricing of defaultable game options with applications to convertible bonds”, Quantitative Finance, 8:8 (2008), 795–810 | DOI | Zbl
[16] Guo X., Hernández-Lerma O., “Zero-sum continuous-time Markov games with unbounded transition and discounted payoff rates”, Bernoulli, 11:6 (2005), 1009–1029 | DOI | Zbl
[17] Hamadéne S., “Mixed zero-sum stochastic differential game and American game options”, SIAM J. Control Optim., 45:2 (2006), 496–518 | DOI
[18] Kolokoltsov V. N., Markov processes, semigroups and generators, De Gruyter Studies in Mathematics, 38, De Gryuter, Berlin, 2011
[19] Laraki R., Solan E., “The value of zero-sum stopping games in continuous time”, SIAM J. Control Optim., 43:5 (2005), 1913–1922 | DOI | Zbl
[20] Marin-Solano J., Shevkoplyas E., “Non-constant discounting and differential games with random time horizon”, Automatica, 47:12 (2011), 2626–2638 | DOI | Zbl
[21] Neyman A., “Continuous-time stochastic games”, Games and Economic Behavior, 104 (2017), 92–130 | DOI | Zbl
[22] Prieto-Rumeau T., Hernández-Lerma O., Selected Topics on Continuous-Time Controlled Markov Chains and Markov Games, ICP Advanced Texts in Mathematics, 5, Imperial College Press, London, 2012 | DOI