Differential game with discrete stopping time
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 4, pp. 93-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a two agents zero-sum differential game with discrete stopping times. The payoff function may depend both on the stopping time, on the state of the system at this time, and on the player who constitutes this stopping time. To formalize strategies, non-anticipating càdlàg stochastic processes are used. Under the Isaacs condition, the existence of the game value is established. The corresponding near-optimal strategy is constructed with stochastic guide based on an auxiliary model game governed by continuous-time Markov chain.
Keywords: zero-sum two-person games, Dynkin's stopping game, differential games, strategy with guide, near optimal strategies, extremal shift.
@article{MGTA_2021_13_4_a4,
     author = {Dmitry V. Khlopin},
     title = {Differential game with discrete stopping time},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {93--128},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2021_13_4_a4/}
}
TY  - JOUR
AU  - Dmitry V. Khlopin
TI  - Differential game with discrete stopping time
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2021
SP  - 93
EP  - 128
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2021_13_4_a4/
LA  - ru
ID  - MGTA_2021_13_4_a4
ER  - 
%0 Journal Article
%A Dmitry V. Khlopin
%T Differential game with discrete stopping time
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2021
%P 93-128
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2021_13_4_a4/
%G ru
%F MGTA_2021_13_4_a4
Dmitry V. Khlopin. Differential game with discrete stopping time. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 4, pp. 93-128. http://geodesic.mathdoc.fr/item/MGTA_2021_13_4_a4/

[1] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977

[2] Dynkin E. B., “Igrovoi variant zadachi ob optimalnoi ostanovke”, Doklady AN SSSR, 185:1 (1969), 16–19 | Zbl

[3] Krasovskii N. N., “Igra sblizheniya-ukloneniya so stokhasticheskim povodyrem”, Doklady AN SSSR, 237:5 (1977), 1020–1023 | Zbl

[4] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974

[5] Krasovskii N. N., Kotelnikova A. N., “Differentsialnaya igra sblizheniya-ukloneniya. Stokhasticheskii povodyr”, Trudy IMM UrO RAN, 15, no. 4, 2009, 146–166

[6] Petrosyan L. A., Shevkoplyas E. V., “Kooperativnye differentsialnye igry so sluchainoi prodolzhitelnostyu”, Vestnik Sankt-Peterburgskogo Universiteta. Seriya 1: Matematika, Mekhanika, Astronomiya, 2000, no. 4, 14–18 | Zbl

[7] Seregina T. V., Ivashko A. A., Mazalov V. V., “Strategii optimalnoi ostanovki v igre “The Price Is Right””, Trudy IMM UrO RAN, 25, no. 3, 2019, 217–231 | Zbl

[8] Khlopin D. V., “Differentsialnaya igra s vozmozhnostyu dosrochnogo zaversheniya”, Trudy IMM UrO RAN, 27, no. 4, 2021

[9] Amir R., Evstigneev I. V., Schenk-Hoppé K.R., “Asset market games of survival: a synthesis of evolutionary and dynamic games”, Annals of Finance, 9:2 (2013), 121–144 | DOI | Zbl

[10] Averboukh Y., “Approximate solutions of continuous-time stochastic games”, SIAM J. Control Optim., 54:5 (2016), 2629–2649 | DOI | Zbl

[11] Averboukh Y., “Approximate Public-Signal Correlated Equilibria For Nonzero-Sum Differential Games”, SIAM J. Control Optim., 57:1 (2019), 743–772 | DOI | Zbl

[12] Basu A., Stettner L., “Zero-sum Markov games with impulse controls”, SIAM J. Control Optim., 58:1 (2020), 580–604 | DOI | Zbl

[13] Bensoussan A., Friedman A., “Nonlinear variational inequalities and differential games with stopping times”, Journal of Functional Analysis, 16:1 (1974), 305–352 | DOI | Zbl

[14] Bensoussan A., Friedman A., “Nonzero-sum stochastic differential games with stopping times and free boundary problems”, Transactions of the American Mathematical Society, 231:2 (1977), 275–327 | DOI | Zbl

[15] Bielecki T. R., Crépey S., Jeanblanc M., Rutkowski M., “Arbitrage pricing of defaultable game options with applications to convertible bonds”, Quantitative Finance, 8:8 (2008), 795–810 | DOI | Zbl

[16] Guo X., Hernández-Lerma O., “Zero-sum continuous-time Markov games with unbounded transition and discounted payoff rates”, Bernoulli, 11:6 (2005), 1009–1029 | DOI | Zbl

[17] Hamadéne S., “Mixed zero-sum stochastic differential game and American game options”, SIAM J. Control Optim., 45:2 (2006), 496–518 | DOI

[18] Kolokoltsov V. N., Markov processes, semigroups and generators, De Gruyter Studies in Mathematics, 38, De Gryuter, Berlin, 2011

[19] Laraki R., Solan E., “The value of zero-sum stopping games in continuous time”, SIAM J. Control Optim., 43:5 (2005), 1913–1922 | DOI | Zbl

[20] Marin-Solano J., Shevkoplyas E., “Non-constant discounting and differential games with random time horizon”, Automatica, 47:12 (2011), 2626–2638 | DOI | Zbl

[21] Neyman A., “Continuous-time stochastic games”, Games and Economic Behavior, 104 (2017), 92–130 | DOI | Zbl

[22] Prieto-Rumeau T., Hernández-Lerma O., Selected Topics on Continuous-Time Controlled Markov Chains and Markov Games, ICP Advanced Texts in Mathematics, 5, Imperial College Press, London, 2012 | DOI