Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2021_13_4_a3, author = {Marianna V. Matushkina and Xenia V. Soboleva}, title = {Adjustment dynamics in a regular stochastic network}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {72--92}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2021_13_4_a3/} }
TY - JOUR AU - Marianna V. Matushkina AU - Xenia V. Soboleva TI - Adjustment dynamics in a regular stochastic network JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2021 SP - 72 EP - 92 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2021_13_4_a3/ LA - ru ID - MGTA_2021_13_4_a3 ER -
Marianna V. Matushkina; Xenia V. Soboleva. Adjustment dynamics in a regular stochastic network. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 4, pp. 72-92. http://geodesic.mathdoc.fr/item/MGTA_2021_13_4_a3/
[1] Belopolskaya Ya. I., Stokhasticheskie differentsialnye uravneniya, Lan, SPb., 2019
[2] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, FIZMATLIT, M., 2005
[3] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968
[4] Oksendal B., Stokhasticheskie differentsialnye uravneniya, Mir, M., 2003
[5] Borodin A. N., Salminen P., Handbook of Brownian Motion. Facts and Formulae, Birkhauser Verlag, Basel–Boston–Berlin, 1996 | Zbl
[6] Bramoullé Y., Kranton R., D'Amours M., “Strategic interaction and networks”, Amer. Econ. Review, 104:3 (2014), 898–930 | DOI
[7] Galeotti A., Goyal S., Jackson M. O., Vega-Redondo F., Yariv L., “Network games”, Review of Econ. Studies, 77 (2010), 218–244 | DOI | Zbl
[8] Garmash M. V., Kaneva X. A., “Game equilibria and adjustment dynamics in full networks and in triangle with heterogeneous agents”, Automation and Remote Control, 81:6 (2020), 1149–1165 | DOI | Zbl
[9] Jackson M. O., Zenou Y., “Games on networks”, Handbook of game theory, v. 4, eds. Young P., Zamir S., 2014, 95–163
[10] Lamperti J., Stochastic processes, Springer-Verlag, New York, 1977 | Zbl
[11] Martemyanov Y. P., Matveenko V. D., “On the dependence of the growth rate on the elasticity of substitution in a network”, Int. Journal of Process Ma-nagement and Benchmarking, 4:4 (2014), 475–492 | DOI
[12] Matveenko V. D., Korolev A. V., “Network game with production and knowledge externalities”, Contributions to Game Theory and Management, 8 (2015), 199–222
[13] Matveenko V., Korolev A., Zhdanova M., “Game equilibria and unification dy-namics in networks with heterogeneous agents”, Int. Journal of Engineering Business Management, 9 (2017), 1–17 | DOI
[14] Matveenko V. D., Korolev A. V., “Knowledge externalities and production in network: game equilibria, types of nodes, network formation”, Int. Journal of Computational Economics and Econometrics, 7:4 (2017), 323–358 | DOI
[15] Matveenko V., Garmash M., Korolev A., “Game Equilibria and Transition Dynamics in Networks with Heterogeneous Agents”, Frontiers of Dynamic Games, Chapter 10, eds. L.A. Petrosyan, V.V. Mazalov, N.A. Zenkevich, Birkhauser/Springer, 2018, 165–188 | DOI | Zbl
[16] Romer P. M., “Increasing returns and long-run growth”, The Journal of Political Economy, 94 (1986), 1002–1037 | DOI