Equilibrium flow assignment in a single-commodity network
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 4, pp. 42-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the analysis of non-zero commodity flows between distant from each other suppliers and consumers of some certain product. The issue is formulated in the form of a single-commodity equilibrium flow assignment problem. A single-commodity network, presented by a directed graph, models an integrated market of a certain product with multiple suppliers and consumers under linear functions of demand, supply, and transportation. An explicit form of conditions on active variables is obtained as well as an explicit form of variables themselves. An explicit form of conditions on non-zero commodity flow between suppliers and consumers will allow one to develop methodological tools for decision-making support in the field of analysis of spatial market relations in some integrated market of a certain product.
Keywords: nonlinear optimization, equilibrium flow assignment, single-commodity network.
@article{MGTA_2021_13_4_a2,
     author = {Alexandr Yu. Krylatov and Yulia E. Lonyagina},
     title = {Equilibrium flow assignment in a single-commodity network},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {42--71},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2021_13_4_a2/}
}
TY  - JOUR
AU  - Alexandr Yu. Krylatov
AU  - Yulia E. Lonyagina
TI  - Equilibrium flow assignment in a single-commodity network
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2021
SP  - 42
EP  - 71
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2021_13_4_a2/
LA  - ru
ID  - MGTA_2021_13_4_a2
ER  - 
%0 Journal Article
%A Alexandr Yu. Krylatov
%A Yulia E. Lonyagina
%T Equilibrium flow assignment in a single-commodity network
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2021
%P 42-71
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2021_13_4_a2/
%G ru
%F MGTA_2021_13_4_a2
Alexandr Yu. Krylatov; Yulia E. Lonyagina. Equilibrium flow assignment in a single-commodity network. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 13 (2021) no. 4, pp. 42-71. http://geodesic.mathdoc.fr/item/MGTA_2021_13_4_a2/

[1] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966

[2] Barrett C. B., Li J.R., “Distinguishing between equilibrium and integration in spatial price analysis”, American Journal of Agricultural Economics, 84:2 (2002), 292–307 | DOI

[3] Enke S., “Equilibrium among spatially separated markets: solution by electric analogue”, Econometrica, 19:1 (1951), 40–47 | DOI | Zbl

[4] Enke S., “Space and value”, The Quarterly Journal of Economics, 56:4 (1942), 627–637 | DOI

[5] Florian M., Los M., “A new look at static spatial price equilibrium models”, Regional Science and Urban Economics, 12:4 (1982), 579–597 | DOI

[6] Marshall A., Principles of economics, 8th ed., Macmillan and Co, London, 1920

[7] McNew K., “Spatial market integration: definition, theory, and evidence”, Agricultural and Resource Economics Review, 25:1 (1996), 1–11 | DOI

[8] Nagurney A., Network economics: a variational inequality approach, Kluwer Academic Publ., Amsterdam, 1993 | Zbl

[9] Patriksson M., The traffic assignment problem: models and methods, Dover Publ., New York, 1994

[10] Takayama T., Judge G. G., “Equilibrium among spatially separated markets: a reformulation”, Econometrica, 32:4 (1964), 510–524 | DOI

[11] Samuelson P. A., “Spatial price equilibrium and linear programming”, The American Economic Review, 42:3 (1952), 283–303

[12] Stephens E. C., Mabaya E., von Cramon-Taubadel S., Barrett C. B., “Spatial Price Adjustment with and without Trade”, Oxford Bulletin of Economics and Statistics, 74:3 (2012), 453–469 | DOI